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A GENERAL METHOD FOR CREATING LORENZ CURVES

by ZuXiang Wang

Wuhan University

Yew-Kwang Ng and Russell Smyth*
Monash University

A general method to construct parametric Lorenz models of the weighted-product form is offered in
this paper. Initially, a general result to describe the conditions for the weighted-product model to be a
Lorenz curve, created by using several component parametric Lorenz models, is given. We show that
the key property for an ideal component model is that the ratio between its second derivative and its
first derivative is increasing. Then, a set of Lorenz models, consisting of a basic group of models, along
with their convex combinations, is proposed, and it is shown that any model in the set possesses this key
property. We introduce the concept of balanced fit, which provides a means of assigning weights,
according to the preferences of the practitioner, to two alternative objectives for developing Lorenz
curves in practice. These objectives are generating an acceptable Lorenz curve and improving the
accuracy of the density estimation. We apply the balanced fit approach to income survey data from
China to illustrate the performance of our models. We first show that our models outperform other
popular traditional Lorenz models in the literature. Second, we compare the results generated by the
balanced fit approach applied to one of the Lorenz models that we develop with those generated by the
kernel method to show that the approach proposed in the paper generates plausible density estimates.

1. Introduction

The parametric Lorenz model is an important tool in income distribution
analysis. Many researchers have contributed to the literature on Lorenz models.
Normally, each contribution provides an individual model with test results applied
to some empirical data. Schader and Schmid (1994) give an exhaustive list of the
models until the mid-1990s. More recent models include those proposed by
Ogwang and Rao (1996, 2000), Ryu and Slottje (1996), and Sarabia et al. (1999,
2001). Overall, there have been about two dozen Lorenz models proposed in the
literature. For a comparison of existing models, see Cheong (2002) and Schader
and Schmid (1994).

The shortcomings of existing models in the literature include the following.
First, they fail to explain why a specific functional form can be used to model
income data for a variety of sources (Ryu and Slottje, 1996). Second, some models
do not give a global approximation to the actual data. Specifically, they may fit the
data well at some parts of the distribution, but are poor fits elsewhere (Basmann
et al., 1990; Ryu and Slottje, 1996; Ogwang and Rao, 2000). Third, some models
do not satisfy the definition of the Lorenz curve. We address these limitations by
providing a general method to construct Lorenz models. There are three important
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features of the models which we provide: they each satisfy the definition of the
Lorenz curve; the efficiency of some of the models has never before been demon-
strated in the literature; and several well-known models in the literature are
included as special cases of these models.

The general method we propose entails constructing weighted-product
models by using a special set of parametric Lorenz models. The simplest weighted-
product model is the multiplicative form of two-component Lorenz models. We
first provide general conditions for this simplest form to satisfy the definition of the
Lorenz curve and find that an ideal component for the multiplicative form is that
the ratio between its second derivative and its first derivative is increasing.
Equipped with this result, we provide a general theorem which sets forth the
conditions for a weighted-product model of finite Lorenz models to satisfy the
definition of the Lorenz curve. We then suggest a special set X of parametric
Lorenz models with this ideal property. The set X consists of a few simple Lorenz
models as well as their convex combinations. These simple models can be under-
stood as generalizations of the Lorenz curve associated with the classical Pareto
distribution. With the aid of the general theorem, and the set X, we can generate
millions of weighted-product models.

In addition, we propose the method of balanced fit as a compromise between
two different, though related, objectives when developing Lorenz curves in prac-
tice. On the one hand, the key objective may be to obtain an overall measure of
income inequality such as the Gini index where the acceptability of the Lorenz
curve is important. On the other hand, the major objective may be to estimate the
poverty index, making the accuracy of the density estimates over the relevant
range important. We therefore have two criteria to evaluate the Lorenz curve
estimation. As both objectives may be important for different purposes, we
propose the idea of a balanced fit with different weights (summing to one) given
to these two different objectives. This produces a more general method to deter-
mine the Lorenz curve.

To illustrate the performance of our models, and the concept of balanced fit,
we use data on income distribution from two sources. We initially use data on
income distribution in the United States, previously used by Basmann et al. (1993)
to demonstrate the performance of several of our proposed Lorenz models. The
rationale for using the data for this purpose is that it provides continuity with
several others who have used these data to test the performance of their proposed
Lorenz models. We then proceed to apply the balanced fit approach to rural and
urban income survey data collected by the State Statistical Bureau in Hubei
province in China in 2006 to compare the performance of our main models with
popular existing models in the literature and to show that our approach generates
plausible density estimates.

China has undergone large-scale economic transition since market reforms in
the late 1970s, which has resulted in a high rate of economic growth. Rapid
economic growth, however, has been accompanied by a sharp increase in income
inequality (see, e.g. Chotikapanich et al., 2007). Rising income inequality threatens
China’s ability to maintain sustainable growth and potentially impinges on politi-
cal and social stability (Wan and Zhou, 2005). The latter has been of particular
concern to the Chinese government, with income distribution a central platform of
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constructing a harmonious society as first enunciated by the Hu-Wen administra-
tion during the 2005 National People’s Congress. Hence, we use data from China
to illustrate our models because income inequality in China is such an important
policy issue, and despite the plethora of studies on income inequality in China
there is an urgent need for further advancements in measuring income inequality
in that country. In particular, most studies of income inequality in China have used
household survey data (see, e.g. Meng, 2004). Grouped data are more readily
available in China than household survey data, but since the income data are in
grouped form, some acceptable Lorenz model is needed to approximate the under-
lying Lorenz curve. Income inequality in China also has implications that extend
beyond its national boundaries. As noted by Chotikapanich et al. (2007, pp.
127–8): “As China accounts for about a quarter of the world’s population, changes
in income and income inequality in China have important implications [for] global
income inequality . . . This means that any advancement in the measurement of
income inequality within China is not only important for understanding the eco-
nomic development and well-being of people inside the ‘Middle Kingdom,’ but
also important in the global context.”

The structure of the paper is as follows. Sufficient conditions for the weighted-
product model to satisfy the definition of the Lorenz curve are set out in the next
section. The basic group of Lorenz models is proposed in Section 3. The special set
X of parametric Lorenz models is provided in Section 4, together with some selected
examples of the weighted-product models created from X. The concept of the
balanced fit is proposed in Section 5, while the test results of our new models are
reported in Section 6. The final section offers some suggestions for future research.

2. The General Method for Creating Lorenz Models

We call L(p) a Lorenz curve if L(p), defined on [0,1], possesses a continuous
third derivative and satisfies the conditions that L(0) = 0, L(1) = 1, L′(p) � 0, and
L″(p) � 0. To commence, consider the function of the multiplicative form:

�L p f p g p( ) ( ) ( ) ,= ≥ ≥α υ α υ0 0and

where both the component functions f(p) and g(p) are parametric Lorenz curves. It
follows that �L p( ) is a Lorenz curve if � ′ ≥L p( ) 0 and � ′′ ≥L p( ) 0. But

� ′ = ′ + ′ ≥− −L p f p f p g p g p g p f p( ) ( ) ( ) ( ) ( ) ( ) ( )α υα υ υ α1 1 0

is true, therefore we only have to consider the condition for � ′′ ≥L p( ) 0. Since

� ′′ = − ′ + ′′
+

− −L p f p f p g p f p f p g p
f p

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
(

α α α
αυ

α υ α υ1 2 2 1

)) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

α υ υ α

υ
υ υ

υ

− − −

−
′ ′ + − ′

+ ′′

1 1 2 2

1

1f p g p g p g p g p f p
g p gg p f p g p g p f p f p( ) ( ) ( ) ( ) ( ) ( ),α υ αυα+ ′ ′− −1 1

it follows that � ′′ ≥L p( ) 0 if both a � 1 and u � 1 (see Ogwang and Rao, 2000).
We can consider other cases. Denote the sum of the first three terms on the

right-hand side of the above equation as h(p) and the sum of the remaining three
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terms as t(p). Thus, we need only find the condition for both h(p) � 0 and t(p) � 0.
Since

h p
f p g p

f p g p f p f p g p f p f
( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

α
α υα υ− − = − ′ + ′′ + ′2 1

21 (( ) ( ),p g p′(1)

we can conclude that h(p) � 0 if a � 1/2, u � 0, a + u � 1, and f ″′(p) � 0. Fur-
thermore, we also have h(p) � 0 if a � 0, u � 0, a + u � 1, and f1(p) ≡ f ″(p)/f ′(p)
is increasing.1

Note further:

t p
g p f p

g p f p g p g p f p g p g
( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

υ
υ αυ α− − = − ′ + ′′ + ′2 1

21 (( ) ( ).p f p′

The right-hand side of this equation is exactly the same as that of (1), if we
exchange the position of g(p) and f(p), and the position of a and u. Thus we have
t(p) � 0 if a � 0, u � 1/2, a + u � 1, and g″′(p) � 0. Furthermore, we also have
t(p) � 0 if a � 0, u � 0, a + u � 1, and g1(p) ≡ g″(p)/g′(p) is increasing.

To synthesize the discussion, we have the following lemma:

Lemma 1. Assume both f(p) and g(p) are Lorenz curves. It follows that
�L p f p g p( ) ( ) ( )= α υ is a Lorenz curve if any of the following conditions holds:

(i) a � 1 and u � 1.
(ii) a � 1/2, u � 1, and f ″′(p) � 0 on [0,1].

(iii) a � 0, u � 1, and f ″(p)/f ′(p) is increasing on [0,1].
(iv) a � 1/2, u � 1/2, and both f ″′(p) � 0 and g″′(p) � 0 on [0,1].
(v) a � 0, u � 1/2, a + u � 1, f ″(p)/f ′(p) is increasing and g″′(p) � 0 on

[0,1].
(vi) a � 0, u � 0, a + u � 1, and both f ″(p)/f ′(p) and g″(p)/g′(p) are increas-

ing on [0,1].
By symmetry, under the assumption that g″/g′ is increasing and f ″′(p) � 0 on

[0,1], statement (v) of the lemma implies that �L p( ) is a Lorenz curve if u � 0,
a � 1/2, and a + u � 1.2 For a pair of fixed component Lorenz curves f(p) and
g(p), the ideal situation is that both f ″/f ′ and g″/g′ are increasing. Statement (vi)
then asserts that the admissible range of a and u is {(a,u)|a � 0, u � 0,

1If we write the right-hand side of (1) as y(p), we find that y(0) = 0, and y′(p) � 0 for any p � [0,1].
Moreover, assume a � 0, u � 0, a + u � 1 and that f1(p) ≡ f ″(p)/f ′(p) is increasing, which means

′ ≥f p1 0( ) . Rewrite the right-hand side of (1) as

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).α υ− ′ + + ′[ ] ′1 1f p g p f p f p g p f p g p f p

Let the function between the braces be j(p), we can verify that j(0) = 0 and j′(p) � 0 for any p � [0,1].
Consequently, we can again conclude that h(p) � 0.

2Note that the condition a + u � 1 cannot be relaxed. If, to the contrary, a � 0, u � 0, and
a + u < 1, then by letting f(p) = g(p) = p, we get �L p p( ) = +α υ, which is not a Lorenz curve. According to
Lemma 1, the stricter the condition imposed upon a component function, the larger the admissible
range of the corresponding exponential parameter.
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a + u � 1}, which achieves a state of maximum.3 An important special case of the
multiplicative model of two component Lorenz models is LS(p) = paL(p)u (Sarabia
et al., 1999). We have the following result by Lemma 1:

Corollary. Assume L(p) is a Lorenz curve. Then Ls(p) is a Lorenz curve if any
one or more of the following conditions holds:

(i) a � 0 and u � 1;
(ii) a � 0, u � 1/2, a + u � 1, and L″′(p) � 0;

(iii) a � 0, u � 0, a + u � 1, and L″(p)/L′(p) is increasing.
Sarabia et al. (1999) provide statement (i) of the corollary, but they impose

the condition L″′(p) � 0. The first two statements are also provided, and elabo-
rated on, in Wang et al. (2007). Let

X0 = {L(p)|L(p) be a Lorenz curve with increasing L″(p)/L′(p)}.

Consider a series of component Lorenz models L p Xi i
m( ){ } ⊂=1 0. Denote the

weighted-product model
� � �L p L p L p L pm m

m( ) ( ) ( ) ( ) , , , , .= ≥ ≥ ≥1 2 1 2
1 2 0 0 0α α α α α α

Furthermore, let

Y0 = {L(p)|L(p) be a Lorenz curve with L″′(p) � 0},

Z0 = {L(p)|L(p) be a Lorenz curve}.

Therefore, Z0 contains all possible parametric Lorenz curves. We have
X0 ⊂ Y0 ⊂ Z0. Our general method of creating Lorenz models is described in the
following theorem, which follows from statements (iii), (v), and (vi) of Lemma 1:

Theorem 1. We have three statements:
(i) Let L(p) � Z0. Then �L p L p( ) ( )υ is a Lorenz curve if u � 1.

(ii) Let L(p) � Y0 and assume that there exists an exponent, say,
ai � {a1, . . . ,am}, such that ai + u � 1. Then �L p L p( ) ( )υ is a Lorenz
curve if u � 1/2.

(iii) Let L p Xi i
m( ){ } ⊂=1 0 and assume that there is a pair of exponents within

{a1, . . . ,am}, say, ai and aj with ai + aj � 1. �L p( ) itself is a Lorenz curve.4

A weighted-product model can also be called a Cobb–Douglas model.
Whether our general method is feasible depends on whether we can find the set X0.

3We regard the fact that AL(p) = L″(p)/L′(p) is increasing as a purely technical condition in this
paper. However, AL(p) can be a measure of the curvature of L(p). Based on the Arrow–Pratt measure
of absolute risk aversion (see Pratt, 1964), it can be easily verified that for Lorenz curves LI(p) and
LII(p), A p A pL LI II

( ) ( )≥ for any p � [0,1], if and only if there exists a Lorenz curve H such that
LI(p) = H(LII(p)). That H is a Lorenz curve implies p � H(p) for any p � [0,1]. We thus have
LII(p) � H(LII(p)), and consequently, LII(p) � LI(p) for any p � [0,1], implying that LI(p) is Lorenz
dominated by LII(p) and that the distribution underlying LII(p) is unambiguously more equal than the
distribution underlying LI(p).

4First note that L p L pi
i( ) ( )α is a Lorenz curve for any Li(p) � X0 and ai � 0 as long as L(p) is a

Lorenz curve, as implied by statement (iii) of Lemma 1. Since L(p)u is a Lorenz curve for any L(p) � Z0

and u � 1, the statement implies that L p L pm
m( ) ( )α υ is a Lorenz curve. This implies that

L p L p L pm m
m m

−
−

1
1( ) ( ) ( )α α υ is a Lorenz curve. Hence, statement (i) of the theorem is true by induction. If

L(p) � Y0 and ai + u � 1 with u � 1/2 and ai � 0, statement (v) of Lemma 1 implies that L p L pi
i( ) ( )α υ

is a Lorenz curve. Hence, statement (ii) of the theorem follows in a similar manner to the verification of
statement (i). The same applies to statement (iii) of the theorem by using statement (vi) of Lemma 1.
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If so, we can, for example, create new Lorenz models combining �L p( ) and any
L(p) extant in the literature, according to the first statement of Theorem 1. Unfor-
tunately, we are not able to find the entire set, X0. However, we can consider a less
general alternative by finding a subset X ⊂ X0 and construct weighted-product
models �L p( ) with the elements of X as components. In the next section we suggest
such a set.

3. Generalized Pareto Lorenz Models

Consider the set of basic models:5

L p p1( ) ,=(2)

L p p2 1 1 0 1( ) ( ) , ( , ],= − − ∈β β(3)

L p
e
e

p

λ

λ

λ λ( ) , ,= −
−

>1
1

0(4)

L p L p3 1 1 1
11 1 0 1 0 0

1
1( ) ( ) , ( , ], ( , ) ( , ln ],= − − ∈ ∈ −∞ ∪ −

λ
β β λ β(5)

L p L p4 2 2 21 1 0 1 0 0
2

2( ) ( ) , ( , ], [ln , ) ( , ).= − −( ) ∈ ∈ ∪ + ∞λ
β β λ β(6)

These functions possess the derivative of any order. L2(p) is the Lorenz curve
associated with the classical Pareto distribution. Ll(p) is the Lorenz curve sug-
gested by Chotikapanich (1993) with l its unique parameter. Ll(p) is satisfied for
any l � 0,

Ll(p) � 0 and ′ ≥L pλ( ) 0 on [0,1],
L p L p nn n

λ λλ( )( ) ( ), , , .= ′ =−1 2 3 �

To avoid confusion in the ensuing discussion, note that unlike the parameter
l in the model Ll(p) or Ll(1 - p) = (el - 1)-1(el(1-p) - 1), the symbol i in Li(p) does
not represent a parameter of the model. L1(p) is a special case of L2(p) because it
can be obtained by letting b = 1 in the latter. Ll(p) is equal to L1(p) when l→0.
L3(p) is the Lorenz model provided by Wang and Smyth (2007) and is a generali-
zation of L2(p). L4(p) is a new model and is also a generalization of L2(p). We call
these basic models generalized Pareto (GP) models.

Note that we have the following two inequalities:

( ) ( ) ( ) ,1 1 1 01 11 1
− ′ − − − ≥β λλ λL p L p(7)

5Strictly speaking, L1(p) = p is not the Lorenz curve associated with complete equality. As everyone
has the same income level, strictly speaking, no one can be said to be at the lowest or highest 20 percent
(or any other figure) of the population. The associated Lorenz curve then exists only at the origin and
the termination point by the definition of the curve. To overcome this point, we may adopt, for the
practically non-existent case of complete equality only, the convention of allocating any fraction
0 < x < 1 of the population to be the lowest/highest x percent. This convention then allows the 45
percent line through the origin to be associated with complete equality as usually loosely taken to be so.
This allows us to use L1(p) = p here and it can be a useful component in the creation of Lorenz curves.
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( ) ( ) ( ) ,1 1 02 22 2
− ′ + −( ) ≥β λλ λL p L p(8)

with the parameters defined in (5) and (6), respectively. By the definition of Ll(p),
the inequality (7) is equivalent to λ βλ λ

1
1

1
11 11 1 0( ) ( )e e p− −( ) ≥− − . This inequality

holds because λ λ
1

11 1 0( )e − ≥− for any l1 � 0 and 1 01
11− ≥−β λe p( ) if b1 and l1 are

defined by (5). Meanwhile, (8) is equivalent to λ βλ λ λ
2

1
2

2 2 21 0( )e e e p− −( ) ≥− . It also
holds if b2 and l2 are defined by (6).6 Furthermore, we have:

Lemma 2. Every GP model L(p) is a Lorenz curve with increasing
L″(p)/L′(p).7

Employing only the GP models and the third statement of Theorem 1, we can
create many weighted-product models. For example, all the following are Lorenz
curves:

1 1 0 1 1− −( ) ∈ ≥( ) , ( , ], ,p β υ β υ(9)

p pα β υ β1 1 0 1− −[ ] ∈( ) , ( , ],(10)

p L pα
λ

υ λ( ) , ,> 0(11)

p L pα
λ

β υ β λ β1 1 0 1 0 0 1− −[ ] ∈ ∈ −∞ ∪ −( ) , ( , ], ( , ) ( , ln ],(12)

p L pα
λ

β υ
β λ β1 1 0 1 0 0− −( )⎡⎣ ⎤⎦ ∈ ∈ ∪ + ∞( ) , ( , ], [ln , ) ( , ),(13)

where a � 0, u � 0, and a + u � 1 for the models specified in (10)–(13); (9) is
the model provided by Rasche et al. (1980); (10) and (11) are models proposed by
Sarabia et al. (1999, 2001, respectively), but with u � 1 imposed; and (12) is
suggested by Wang and Smyth (2007), but with u � 1/2 imposed. Since Ll(x) → x
when l → 0, (12) includes (9)–(10) as special cases and (13) includes (9)–(11) as

6To see that L3(p) is a Lorenz curve we have only to verify both ′ ≥L p3 0( ) and ′′ ≥L p3 0( ) . However,
′ = − ′ −−L p L p L p3 1

1
1

1
1

1 1( ) ( ) ( )β λ
β

λ . Thus ′ ≥L p3 0( ) . Moreover,

′′ = − − ′ − − −[ ] ′ −−L p L p L p L p L p3 1
2

1 11
1

1 1 1
1 1 1 1 1( ) ( ) ( ) ( ) ( ) (β β λλ

β
λ λ λ )).

Therefore, ′′ ≥L p3 0( ) by (7). Using (8) and the same deviation we can verify L4(p) is also a Lorenz curve.
7The statement is evident for L1(p), Ll(p) and L2(p). Denote

h p L p L p L p L p L p( ) ( ) ( ) ( ) ( ) ( ) ( ).= ′′ ′ = − ′ − − −[ ] −3 3 1 11 1 1 1
1 1 1

β λλ λ λ

Thus, we have ′ = − ′ − ′ − − −[ ] −h p L p L p L p L p( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 11 1
2

1 1 1 1
β λλ λ λ λ . The right-hand side is

non-negative by (7). Therefore ′′ ′L p L p3 3( ) ( ) is increasing. Using (8) and the same steps we can verify
that ′′ ′L p L p4 4( ) ( ) is also increasing.
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special cases. Note that Sarabia et al.’s (1999) model p pα β υ
1 1− −( )( ) with a � 0

and u � 1 may be significantly inferior to the same model with a � 0, u � 0, and
a + u � 1. The former is a sub-model of the latter. The latter may be useful in
practice, but we do not test it since, for the data used, we get parameter estimates
a = 0 and u > 1; namely, it is equivalent to the Rasche et al. (1980) model
1 1− −( )( )p β υ

for the data tested.
Assume again that a � 0, u � 0, and a + u � 1. By Theorem 1, a more

sophisticated Lorenz model is as follows:

p L p L pα
λ

β α
λ

β υ
1 1 1 1

1
1 1

2

2− −[ ] − −( )⎡⎣ ⎤⎦( ) ( ) ,(14)

where a1 � 0 should be imposed. Of course, we can also impose a + a1 � 1 or
a1 + u � 1 instead. Other parameters are defined in (5)–(6). We have avoided using
a GP member repeatedly in any model above. However, Theorem 1 implies that

1 1 1 11− −( ) − −( )( ) ( )p pβ α β υ
(15)

is also a Lorenz curve, if a � 0, u � 0, a + u � 1, b � (0,1], and b1 � (0,1]. Model
(15) nests

p pα β1 1− −( )( )(16)

where a � 0 and b � (0,1], suggested by Ortega et al. (1991) and the models
defined by (9)–(10). Clearly, (14) nests all other models presented here and should
outperform these other models.

4. The Weighted-Product Lorenz Models

While we have obtained a number of Lorenz models in the last section, better
options still exist. Define

X = {L(p)|L(p) is a convex combination of the GP models}.

Every element of X can be used as a Lorenz model. (For L1(p) = p, see
footnote 4.) Note that the requirement that h(p) = L″(p)/L(p)′ is increasing is
equivalent to h′(p) � 0 or L″′L′ - L″2 � 0 under the continuity assumption of the
derivatives. This implies L″′(p) � 0 in turn, because a Lorenz curve L(p) must
satisfy L′(p) � 0. Let x(p) and y(p) be Lorenz curves with increasing L″/L′. A
sufficient condition for the weighted sum L(p) = dx(p) + (1 - d)y(p) to have
increasing L″/L′, where d is the weight coefficient and satisfies d � [0,1], is

′′′ ′ + ′′′ ′ − ′′ ′′ ≥x y y x x y2 0.(17)

First we give a simple result.

Lemma 3. Let X1 ⊂ X0 be a set of Lorenz models with (17) being satisfied for
any pair x(p) and y(p) in X1, where X0 is defined above. Then, any convex combi-
nation of the elements of X1 belongs to X0.
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Theorem 2. Every element of X is a Lorenz curve with increasing L″/L′.

We postpone proofs of Lemma 3 and Theorem 2 to the online Appendices 1
and 2.8 Using the five GP models, X contains 31 linearly independent elements.
Therefore, millions of weighted-product Lorenz models can be created by using
the elements of X inclusively and the third statement of Theorem 1, even if we
refrain from using an element of X repeatedly in building a model. The method can
be reinforced by adding even a single new member to the GP group. Theorem 2
implies that X will contain 63 elements, increasingly significantly the availability of
the weighted-product models. Alternatively, we can use less desirable models. For
example, L(p) = pAp-1, where A > 0, is a Lorenz curve with L″′(p) � 0, which is
suggested by Gupta (1984). Wang et al. (2007) provide another option:

H p e pp( ) ( )= − −−1 1γ β

with H″′(p) � 0, where b � (0,1] and 0 ≤ + ≤γ β β . Adding even a single such
model to the GP group, we can create about 263 weighted-product models by the
second statement of Theorem 1. However, the admissible range of the exponential
parameter ai for the component with, say, H(p), no longer satisfies ai � 0. For
example,

p e p L ppα γ β
λ

β υδ δ1 1 1 1 1
1

1− −[ ]+ − − −[ ]{ }− ( ) ( ) ( )(18)

is a Lorenz curve, where u � 1/2 must be imposed by Theorem 1. Other parameter
ranges for (18) are a � 0, a + u � 1, b � (0,1], 0 ≤ + ≤γ β β , d � [0,1], b1 � (0,1],
and λ β1 1

10 0∈ −∞ ∪ −( , ) ( , ln ]. Therefore, Theorems 1 and 3 suggest many Lorenz
curves. The following are a few examples with only GP members involved.

p L p L pα
λ λ

β υ
δ δ( ) ( ) ( ) ,+ − − −( )⎡⎣ ⎤⎦{ }1 1 1

2

2(19)

p p L p L pα β
λ λ

β υδ δ δ1 2 31 1 1 1
1

1− −( ) + + − −( ){ }( ) ( ) ( ) ,(20)

1 1 1 1 1
1

1
2

2− −( ) + − − −( )⎡⎣ ⎤⎦{ }L p p L pλ
β α

λ
β υ

δ δ( ) ( ) ( ) ,(21)

δ δ δ δλ
α

λ
β

λ
υ

p L p L p L p+ −[ ] − −( ) + −{ }( ) ( ) ( ) ( ) ( ) ,1 1 1 11 11
1

0
(22)

p p L p pα
λ

α β υδ δ+ −[ ] − −( )( ) ( ) ( ) ,1 1 11(23)

p L p L pα
λ λ

β υδ δ( ) ( ) ( ) .+ − − −( ){ }1 1 1
1

1(24)

8The appendices can be downloaded from the website of the journal (http://onlinelibrary.wiley.
com/journal/10.1111/(ISSN)1475-4991).
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The parameter ranges are at their maximum for all these models; namely,
a � 0, u � 0, a + u � 1, a1 � 1, l0 > 0, d, d1, d2, d3 � [0,1], and d3 = 1 - d1 - d2.
Those not mentioned are defined in (3)–(6). Since the models are all non-linear
functions, a non-linear least squares (NLS) algorithm must be used to estimate the
parameters. While the parameter ranges seem complicated, they can be enforced
by analogous parameter transformations to those used in Wang et al. (2007). Such
transformations allow us to use the unconstrained non-linear least squares
(UNLS) algorithm which is generally more efficient than its constrained counter-
part. For example, the condition for the three weight coefficients in (20) can be
enforced by parameter transformations

δ θ δ θ θ δ θ θ δ δ1
2

1 2
2

1
2

2 3
2

1
2

2 1 21= = = = − −sin , cos sin , cos cosand

where q1 and q2 are two new parameter variables.9

We can expect that over-parameterization will occur in general when we use
too many elements of X as components in a model. There are three guiding lessons
in creating the weighted-product models. One is that we should include different
models of X, rather than use specific instances repeatedly in creating a single model
as done, for example, in the model specified in (15). We find that (15) performs
only slightly better than (10). The second is that models with convex combination
components perform better. For example, (22) with two convex combination
components performs very well, while (14) performs relatively poorly considering
the number of parameters involved. Third, components with (4), (5), (6), or H(p)
involved tend to be more satisfactory when constructing the models. For instance,
(19) or (24) is very satisfactory. There is another explanation. Ll(x) → x when l →
0. This implies that Ll(1 - p)b or (1 - Ll(p))b is much more flexible than (1 - p)b.
Therefore (12) or (13) are generalizations of (9) or (10). Since (9) and (10) perform
quite satisfactorily in many of the instances amongst the traditional Lorenz
models, it is therefore reasonable to expect that (12) or (13) or the models which
have (5) or (6) as components will also generate good results.

One of the drawbacks of some of the above models is that they are compli-
cated. An alternative to the above complicated models is trying simple models,
such as:

δ δα β β υ
p p p1 1 1 1 1 1− −[ ]+ − − −[ ]( ) ( ) ( )(25)

in applications. One of the advantages of (25) is that its convexity is clear, given the
findings of Ortega et al. (1991) and Rasche et al. (1980), respectively.

9The condition a + u � 1 with a � 0 and u � 1/2 can be enforced by

α ζ θ υ ζ θ= + = + +( )sin , ( )cos1 2 1 2 1 22 2 2 2

with z and q two new parameter variables. l � [lnb,0)�(0,+•) with b � [0,1] can be enforced by
l = lnb + z2 with z a new parameter. Since Ll(p) = p as l→0, we do not have to avoid l = 0 when
estimating the models.
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5. The Lorenz Curve of Balanced Fit

With the variety of the Lorenz models developed above, we are able to
consider more sophisticated fitting applications for grouped data. Assume that we
have mean income m and income ranges x0 < x1< . . . <xn < xn+1, where x0 � 0 and
xn+1 is a sufficiently large number. Moreover, assume that we have grouped data
( , )p Li i i

n
=
+
0
1 with p0 = L0 = 0 and pn+1 = Ln+1 = 1, where pi is the cumulative proportion

of income units whose incomes are less than xi and Li is the income share owned
by the population. The Lorenz curve is denoted as l(p). l′(p) is equal to the
p-quantile of the underlying distribution, divided by m. l(p) satisfies l(pi) = Li and
l′(pi) = xi/m for i = 1,2, . . . , n. Specifically, all the information given is contained in:

( , ), , , ,p L i ni i for = 1 2 �(26)

( , ), , , , .p x i ni i μ for = 1 2 �(27)

Kakwani (1976) uses both (26) and (27) to create polynomial functions to
approximate the Lorenz curve. However, many authors do not use (27) in devel-
oping Lorenz models. Instead, they only require their estimated Lorenz curve to be
as close as possible to (26), normally, by minimizing the objective function

L p Li ii

n
( ) −( )

=∑ 2

1
, assuming that the estimated Lorenz curve will generate an

acceptable approximation to (27). This may not necessarily be the case, where L(p)
is the proposed parametric Lorenz model. One can take the opposite approach and
attempt to get the derivative of the estimated Lorenz curve as close as possible to
(27) by minimizing ′ −( )

=∑ L p xi ii

n
( ) μ 2

1
, while assuming that the estimated

Lorenz curve can produce an acceptable approximation to (26). This may also not
necessarily be the case, but improved estimation of the derivative suggests it should
be possible to better estimate the relative frequency, since the solver of
mL′(p) - x = 0 is the relative frequency at x.

The above two approaches to estimating Lorenz curves represent two
extremes, which are useful in practice. If our main objective is to obtain the Gini
index, where the approximation of the Lorenz curve is important, the former
approach is useful. On the other hand, if what we are mainly concerned with is the
density estimate, for example, in poverty index estimation where a plausible
density estimate is essential, the latter approach is useful. We can consider a third
approach between the two extremes. This can be achieved by a trade-off between
the two extremes, namely, choosing b � [0,1] and then minimizing the balanced
objective function

b L p L b L p xi i
i

n

i i
i

n

( ) ( ) ( )−( ) + − ′ −( )
= =
∑ ∑2

1

2

1

1 μ(28)

to find an estimate of the Lorenz curve. If one’s key focus is on improving the
approximation quality of the estimated Lorenz curve, choosing a larger value of
b < 1 is more appropriate. Alternatively, if one is more concerned with the accu-
racy of the density estimate, selecting a smaller b > 0 is more appropriate. In this
sense, b can be adjusted as a balance according to the objectives of the practitioner.
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We find that

b L p L b F x pi i
i

n

i i
i

n

( ) −( ) + −( ) ( ) −( )
= =
∑ ∑2

1

2

1

1 ˆ(29)

is a better form, where ˆ ( )F xi is the root of mL′(p) - xi = 0 for each xi and is a
relative frequency estimate at xi. Minimizing (29) may not necessarily yield the
same solution as minimizing (28). However, not only is (29) better numerically
when b � 1 since all the numbers involved in the function are then in the interval
[0,1], but the objective function in (28) will also be small at a solution that
minimizes (29) if the solution makes the objective function in (29) small. We call
the resultant Lorenz curve from minimizing (28) or (29), the Lorenz curve of
balanced fit.

To require the fitted curve to take account of the function values as well as
derivatives is not new. The well-known Hermite polynomial interpolation is widely
used in approximation theory, where piecewise polynomials are used to interpolate
both (26) and (27). Better tools, such as splines, can also be used to interpolate the
two sets of conditions. One difficulty of such interpolations for the grouped
income data is that the approximation is cumbersome in the income intervals at the
two ends of the entire income range. Another difficulty is that the computation is
quite complicated. Cowell and Mehta (1982) and Kakwani (1976) thoroughly
study these methods.

The balanced fit cannot be implemented without satisfactory Lorenz models.
For example, the non-Lorenz-curve functions used to model Lorenz curves in the
literature (see, e.g. Kakwani and Podder, 1976; Kakwani, 1980; Basmann et al.,
1990,) cannot be used to form the second term of (28) or (29), since ′ˆ ( )L pi may not
be positive, or μ ′ − =ˆ ( )L p xi 0 may have multiple solvers or no solvers at all.

6. Empirical Calculations

In the tests performed in this section, we use UNLS to estimate the parameters
of the Lorenz models developed in this paper. Two examples are presented to
illustrate the performance of our models. The first uses data on income distribu-
tion for the United States, which has previously been used by Basmann et al.
(1993), to illustrate the performance of models (14) and (18)–(23). The second uses
data from the 2006 income survey of Hubei province, China to illustrate the
concept of balanced fit.

6.1. U.S. Income Data Estimation

The United States income distribution data, used by Basmann et al. (1993),
consists of grouped data for seven years over the period 1977–83. In total, there are
99 points on the empirical Lorenz curve for each year; that is, p L pi i i, ( )( ) =1

99 with
pi = 0.01i, where L(p) denotes the empirical Lorenz curve. We fit the models given
in (14) and (18)–(23), respectively, to the 99 points by minimizing (28) with b = 1,
since we do not have the associated income interval information.
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Our estimation results for 1977 are presented in Table 1, with estimated
parameters in Table A1 in the online Appendix 3, where error measures

MAXABS max

MSE

MAE

= ( ) − ( )

= ( ) − ( )( )
=

≤ ≤
−

=∑
1

1 2

1

i n
i i

i ii

n

L p L p

n L p L p

ˆ

ˆ

nn L p L pi ii

n−
=

( ) − ( )

⎧

⎨
⎪⎪

⎩
⎪
⎪ ∑1

1
ˆ

(30)

are used to compare the models, where n = 99. Sarabia et al. (1999, 2001) also used
these three measures in the development of their Lorenz models.

From the MAXABS measure in Table 1, models (14) and (23) are inferior to
the others, while model (22) performs best. The MAXABS value is only about 0.02
percent, while the MSE measure is only 0.0067 ¥ 10-6. The other four models are
not distinguishable by MAE. Apart from models (14) and (23), each model is a
good global approximation to the data. Their MAXABS values are not larger than
0.07 percent, implying that the error of the estimated Lorenz curve begins to occur
at most at the fourth digit after the decimal point. Our estimated Gini indices listed
in Table 1 are only slightly different from the empirical Gini provided by Cheong
(2002), which is 0.3682. The empirical Gini can be understood as the lower limit of
the Gini indices, since it is calculated from the Lorenz curve obtained as the
piecewise linear interpolation over the 99 data points.

The numbers which are emboldened in Table 1 are the bootstrapped standard
errors with 200 repetitions. We use the re-sampling bootstrapping method to
estimate the standard errors, employing the detailed procedure given by Efron and
Tibshirani (1993, pp. 45–9). We use a procedure called bootstrapping the pairs.
The basic requirement of bootstrapping is that the data re-sampled should be
independent and identically distributed. For the grouped data given in (26) and
(27), the average income of the income units whose incomes are in [xi-1,xi] is
mi = mDli/Dpi, where Dli = l(pi) - l(pi-1), Dpi = pi - pi-1, and m is the average income of
all the income units. Let Xi = (Dpi,mi).10 We draw B random samples of size n with
replacement from the set {1,2, . . . ,n}. Let {i1,i2, . . . ,in} be such a sample. We then
apply the Lorenz curve models to sample { }Xi j

n

j =1, and obtain new estimates of the
parameters and Gini indices. Finally, the standard errors are computed according
to Efron and Tibshirani (1993).

10For the United States data, Dpi = 0.01 for all i = 1,2, . . . ,99 if setting p0 = 0. Therefore, if setting
m = 1, Xi = (Dpi,Dli) can be used.

TABLE 1

Error Measures and Gini Estimates for U.S. 1977 Income Data

(14) (18) (19) (20) (21) (22) (23)

MSE ¥ 106 0.3835 0.0246 0.0308 0.0291 0.0298 0.0067 0.3929
MAE 0.0005 0.0001 0.0001 0.0001 0.0002 0.0001 0.0005
MAXABS 0.0028 0.0005 0.0007 0.0006 0.0005 0.0002 0.0026
Gini 0.3685 0.3683 0.3683 0.3683 0.3683 0.3683 0.3681

0.0216 0.0211 0.0229 0.0225 0.0210 0.0211 0.0222

Note: Figures in bold below the Gini indices are their bootstrap standard errors.
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The performance of model (23) is much poorer if Ll(p) is replaced with the
model specified in (3) in the second component of (23), so as to result in a model
which nests (15). This implies that (15) does not satisfactorily cope with the data
configuration here. Thus, we can conclude that there may be many models created
from X which are superior to some traditional models currently in the literature.
We do not reproduce our results for the United States income distribution data for
1978–83 in order to conserve space, but these are available on request. Our results
for 1978–83 paint a similar picture to those for 1977; i.e. models (18)–(22) perform
satisfactorily for almost all the years and these are superior to models (14) and
(23).

6.2. An Application to the Data of Hubei Province, China

We next use data from the 2006 income survey of Hubei province in China.
We use samples from rural and urban Hubei. Hubei is located in central China,
with a rural population of 32 million and an urban population of 28.3 million. The
rural sample size is 13,232 and the urban sample size is 5317. The survey was
conducted by a survey team operating under the auspices of the State Statistical
Bureau.

After obtaining the Lorenz curve estimate ˆ( )L p by using a Lorenz model L(p)
to fit the grouped data, we can find a density estimate ˆ( ) ˆ ( )f x L p= ′′1 μ for any x,
where p is obtained by solving μ ′ − =ˆ ( )L p x 0. Given any x > 0, the solver denoted
by ˆ ( )F x is the estimate of the ratio of population whose income is less than x.
Therefore, the relative frequency estimates of any income interval can be calcu-
lated. However, it can be difficult to find formulae of close form for the density
function with a weighted product model, given the complexity of ′ˆ ( )L p .

One well-known method to estimate the density function when sample data is
available is the kernel method. Assume the sample of size m is {y1,y2, . . . ,ym}.
In our kernel density estimates, the standard normal density function
K t e t( ) = − 2 2π is used as a kernel function with window width h m= −1 06 1 5. σ̂ ,
where σ̂ is the sample standard deviation (see Silverman, 1998 for an explana-
tion.). The kernel estimate is then

ˆ( ) .f x
mh

K
x y

h
i

i

m

= −( )
=
∑1

1

The kernel method is satisfactory because ˆ( )f x converges in probability to
the true density underlying the sample as m → • under some conditions, but the
shape of the density estimate for the given finite sample can vary for different
window widths.

We arrange the incomes of the urban and rural samples in increasing order,
divide the income range containing all the incomes into equal length intervals, and
then form grouped data ( , ), ,p L p xi i i i i

nμ( ){ } =1. Since it is common in practice to
have grouped data with 10 or so groups, we use data with a small number of
groups. The grouped data with 10 groups is used as shown in Table 2. We use the
balanced fit to obtain Lorenz estimates where (29) is minimized. We consider b = 1,
b = 0.5, and b = 0.
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We present the results in three parts. The first part is a comparison of the
performance of some popular traditional Lorenz models in the literature with our
models, using urban grouped data. The second part gives density estimates for
both the kernel method and for model (22) using data for both rural and urban
areas. The third part discusses the implications of the Gini coefficients from the
sample.

6.2.1. Comparing Models Using the Balanced Fit Approach

We compare the performance of models (9), (16), and (25) to that of models
(19), (22), and (23), since (9) and (16) are among the most well-known in the
literature and (25) is a satisfactory model in practice. Table 3 contains the esti-
mated errors of these models in terms of (30). We note that the frequency estimates
when b = 0.5 are inferior to when b = 0, but are better than when b = 1 for all the
models. Meanwhile, the Lorenz curve estimates when b = 0.5 are inferior to when
b = 1, but are better than when b = 0. As b gets smaller, we sacrifice accuracy of the
Lorenz curve estimates in exchange for the increased accuracy of the frequency
estimates.

There are three observations concerning the performance of models (9) and
(16) vis-à-vis the other four models for all three values of b. First, the performance
of models (9) and (16) is inferior to that of the other four models, with (9) being
slightly better than (16). Second, the frequency estimate errors of (9) and (16) are
much larger than that of the other models. Third, in comparison with the other
models, (9) and (16) may not be adequate in estimating densities, since the errors
of the frequency estimates here are rather large, even if b = 0.

With respect to the other four models, we also make three observations. First,
the performance of (19) and (23) is very similar, both in terms of the Lorenz curve
approximation and frequency estimates. Meanwhile, (25) is only slightly inferior to
(19) and (23), and as such has much to commend it because of its simplicity.
Second, (22) performs best in all situations. It yields the best estimate of the Lorenz
curve when b = 1 and the best estimates of frequency when b = 0. Furthermore,

TABLE 2

Grouped Income Data for 2006 Hubei Province, China

Urban Rural

Income Income Class Income Income Class
Range Units Average Range Units Average

0–1999 20 1,524.95 0–899 584 672.06
2000–3999 393 3,231.74 900–1799 1,834 1,401.49
4000–5999 998 5,056.20 1800–2699 3,002 2,239.60
6000–7999 1,192 7,001.41 2700–3599 2,845 3,117.22
8000–9999 877 8,920.33 3600–4499 2,016 4,015.28

10000–11999 553 11,075.19 4500–5399 1,264 4,911.59
12000–13999 478 12,936.17 5400–6299 680 5,803.99
14000–15999 296 14,939.05 6300–7199 390 6,723.93
16000–17999 171 16,971.20 7200–8099 267 7,619.88
18000–19999 130 18,921.53 8100–8999 143 8,540.94
Above 20000 209 25,135.19 Above 9000 207 12,686.77
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both the Lorenz curve and the frequency estimates of this model are quite satis-
factory when b = 0.5. Third, observing the MAXABS we find that better perform-
ing models like (22) are needed, if better density estimates are considered desirable.
Traditional models such as (9), (16), and (25) may not perform satisfactorily in this
respect.

6.2.2. Results of Density Estimation

Figure 1 (A) presents our density estimates with model (22) for the urban
sample, where the observed frequencies are shown by the background histogram
with bin length h0 = 2000. The kernel density estimate for the sample is also given
in the figure which exhibits a little upward bias near the origin. The figure shows
that the densities corresponding to b = 1, b = 0.5, and b = 0, respectively are close
to the kernel density. The bimodality of densities corresponding to b = 0.5 and
b = 0, shown in Figure 1 (A), are reasonable based on histograms with smaller bin
length, which are not given to conserve space. The possibility of generating such
densities is desirable in practice. Most, if not all, of the probability density func-
tions for modeling the size distribution of income in the literature are unimodal, as
noted by Lambert (2001). Figure 1 (B) presents the counterpart estimates to the
urban area for the rural sample.

It is difficult to distinguish the densities generated by the two methods for the
urban and rural samples from the figures. We list the relative frequency approxi-
mations in Table 4 with the same error measures of (22) as listed in Table 3 used

TABLE 3

Estimated Errors for the Urban Data of Hubei Province, China

Lorenz Curve Approximation Frequency Approximation

GiniMSE ¥ 105 MAE MAXABS MSE ¥ 105 MAE MAXABS

b = 1
(9) 0.9569 0.0026 0.0050 24.7315 0.0125 0.0283 0.2859

(16) 1.3677 0.0031 0.0060 31.9309 0.0141 0.0318 0.2863
(25) 0.0172 0.0003 0.0009 3.3032 0.0049 0.0111 0.2837
(19) 0.0172 0.0004 0.0008 3.0447 0.0048 0.0104 0.2838
(22) 0.0014 0.0001 0.0002 0.9789 0.0024 0.0073 0.2838
(23) 0.0143 0.0003 0.0007 2.4373 0.0041 0.0101 0.2837

b = 0.5
(9) 2.9235 0.0043 0.0092 15.2387 0.0108 0.0227 0.2895

(16) 4.0576 0.0050 0.0113 19.6440 0.0121 0.0254 0.2905
(25) 0.0367 0.0005 0.0010 2.6617 0.0041 0.0098 0.2834
(19) 0.0479 0.0006 0.0011 2.4282 0.0041 0.0096 0.2838
(22) 0.0322 0.0005 0.0008 0.1673 0.0010 0.0027 0.2832
(23) 0.0378 0.0005 0.0010 2.2536 0.0038 0.0091 0.2838

b = 0
(9) 6.6528 0.0068 0.0129 12.2656 0.0103 0.0194 0.2941

(16) 9.5357 0.0081 0.0155 15.5204 0.0116 0.0214 0.2962
(25) 0.0646 0.0007 0.0015 2.6591 0.0041 0.0100 0.2838
(19) 0.1513 0.0010 0.0020 2.3549 0.0040 0.0096 0.2847
(22) 0.1037 0.0009 0.0015 0.1576 0.0009 0.0027 0.2839
(23) 0.1241 0.0009 0.0017 2.2201 0.0038 0.0090 0.2846

Note: Gini index from sample is 0.2836.
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to facilitate comparison, where DFi = pi - pi-1 is the observed relative frequency in
the income interval [xi-1,xi]. The other four columns are estimated frequencies with
the balanced fit and kernel methods, respectively. For both the urban and rural
samples, with b decreasing from 1 to 0, the frequency estimates improve for the
three balanced fit results in terms of the three error measures. For the rural sample,
the kernel density is marginally better than the density estimate of the balanced fit
with b = 1. But with b = 0.5 and b = 0, this result is reversed. Compared with the
estimates from the kernel method, the frequency estimates from the balanced fit
for (22) are closer to the empirical data in terms of the measures considered. Hence,
the density estimates with (22) appear plausible for the Hubei income distribution
data.

Figure 1. Densities of the urban area (A) and rural area (B) of Hubei Province, China
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Table 5 provides estimates of Lorenz curves for the rural and urban samples.
The results show that all three balanced fit estimates are better than those with the
kernel method, where the same error measures of (22) as displayed in Table 3 are
repeated for convenience of comparison. The estimates of the balanced fit with
b = 1 are closest to the empirical values. When b decreases from b = 1 to b = 0, the
error measures get larger. The Gini indices generated from the two methods are
very close to each other. But the Gini estimates of the kernel method have a little
upward bias. Therefore, the estimates from the Lorenz model, which uses much
less information, seem to be better than those of the kernel method in the estima-
tion of Lorenz curves. Based on the results reported in Tables 4 and 5, the esti-
mated Lorenz curves for the rural and urban areas produced by the balanced fit
with b = 0.5 and b = 0 yield a global approximation to the empirical data both
in Lorenz curve values and relative frequencies. The parameter estimation of
models for the 2006 data of Hubei province, China, is in Table A2 in the online
Appendix 3.

TABLE 4

Relative Frequency Estimation for the 2006 Data of Hubei Province, China

Actual Balanced Fit with Model (22)

KernelDFi b = 1 b = 0.5 b = 0

Urban:
0.0038 0.0059 0.0045 0.0046 0.0129
0.0739 0.0727 0.0725 0.0727 0.0804
0.1877 0.1865 0.1882 0.1882 0.1758
0.2242 0.2255 0.2236 0.2240 0.2117
0.1649 0.1576 0.1650 0.1650 0.1629
0.1040 0.1091 0.1043 0.1041 0.1106
0.0899 0.0902 0.0895 0.0896 0.0897
0.0557 0.0558 0.0558 0.0555 0.0562
0.0322 0.0335 0.0342 0.0341 0.0349
0.0244 0.0224 0.0217 0.0217 0.0241
0.0393 0.0407 0.0407 0.0406 0.0411

MSE ¥ 105 0.9789 0.1673 0.1576 4.8196
MAE 0.0024 0.0010 0.0009 0.0054
MAXABS 0.0073 0.0027 0.0027 0.0125

Rural:
0.0441 0.0388 0.0448 0.0441 0.0478
0.1386 0.1515 0.1388 0.1386 0.1436
0.2269 0.2225 0.2270 0.2269 0.2188
0.2150 0.2149 0.2149 0.2150 0.2106
0.1524 0.1490 0.1520 0.1523 0.1503
0.0955 0.0955 0.0961 0.0957 0.0964
0.0514 0.0516 0.0501 0.0509 0.0529
0.0295 0.0300 0.0300 0.0302 0.0303
0.0202 0.0189 0.0195 0.0192 0.0200
0.0108 0.0118 0.0122 0.0118 0.0107
0.0156 0.0156 0.0147 0.0152 0.0186

MSE ¥ 105 2.2934 0.0621 0.0290 1.4081
MAE 0.0029 0.0007 0.0004 0.0030
MAXABS 0.0129 0.0014 0.0010 0.0081

Note: Characters in bold indicate where the MAXABS turns up.
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6.2.3. Results for the Gini Coefficients

The Gini coefficients for urban and rural Hubei for 2006 calculated from the
sample are 0.2836 and 0.3063, respectively. These Gini coefficients are fairly
similar in magnitude to those reported in previous studies that have examined
income inequality in China using grouped data (see, e.g. Bramall, 2001; Chotika-
panich et al., 2007; Wang et al., 2009). In particular, consistent with the results in
Chotikapanich et al. (2007), we find that inequality in rural China has been higher
than in urban China. This result is significant for the following reasons. First, the
Chinese government has allocated a considerable amount of funds to support
poverty reduction each year since 1986 (see Park et al., 2002). However, several
studies suggest that high rural income inequality has undermined the Chinese
government’s attempts to reduce poverty in China (see, e.g. Ravallion and Chen,
2007). Second, rural income inequality has been a particular concern of the

TABLE 5

Lorenz Estimates for the 2006 Data of Hubei Province, China

p

Actual Balanced Fit with Model (22)

KernelL(p) b = 1 b = 0.5 b = 0

Urban:
0.0038 0.0006 0.0006 0.0006 0.0006 0.0003
0.0777 0.0261 0.0259 0.0264 0.0264 0.0230
0.2654 0.1273 0.1274 0.1281 0.1279 0.1222
0.4896 0.2947 0.2946 0.2955 0.2953 0.2899
0.6545 0.4516 0.4517 0.4515 0.4508 0.4491
0.7585 0.5744 0.5742 0.5738 0.5733 0.5722
0.8484 0.6984 0.6985 0.6979 0.6972 0.6973
0.9041 0.7871 0.7872 0.7866 0.7859 0.7867
0.9362 0.8453 0.8452 0.8446 0.8438 0.8453
0.9607 0.8946 0.8947 0.8940 0.8931 0.8951
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

MSE ¥ 105 0.0014 0.0322 0.1037 0.7069
MAE 0.0001 0.0005 0.0009 0.0020
MAXABS 0.0002 0.0008 0.0015 0.0051
Gini 0.2836* 0.2838 0.2832 0.2839 0.2907

Rural:
0.0441 0.0087 0.0087 0.0077 0.0078 0.0074
0.1827 0.0654 0.0654 0.0643 0.0645 0.0627
0.4096 0.2138 0.2138 0.2148 0.2152 0.2110
0.6246 0.4095 0.4095 0.4097 0.4110 0.4082
0.7770 0.5882 0.5882 0.5891 0.5903 0.5883
0.8725 0.7252 0.7252 0.7256 0.7270 0.7268
0.9239 0.8123 0.8124 0.8127 0.8142 0.8149
0.9534 0.8702 0.8701 0.8705 0.8719 0.8735
0.9735 0.9151 0.9151 0.9154 0.9168 0.9192
0.9844 0.9420 0.9420 0.9422 0.9437 0.9469
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

MSE ¥ 105 0.0001 0.0478 0.2547 0.7905
MAE 0.0000 0.0006 0.0015 0.0025
MAXABS 0.0001 0.0011 0.0021 0.0048
Gini 0.3063* 0.3064 0.3061 0.3045 0.3124

Note: Characters in bold indicate where the MAXABS turns up for each model. Gini indices with
asterisks are calculated from the samples.
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Hu-Wen administration who are concerned about the potential adverse effects on
China’s economic growth. There is a voluminous theoretical and empirical litera-
ture on the effects of income inequality on growth. From a theoretical perspective
there are arguments going both ways (Wan et al., 2006). The empirical evidence on
the effect of inequality on growth for a range of countries and empirical specifi-
cations has been mixed (Banerjee and Duflo, 2003). The only study that examines
this issue for rural China is Ravallion and Chen (2007). Their findings point to a
negative effect of inequality on growth. In particular, they find that periods of
most rapid growth were not associated with more rapid increases in inequality,
while periods of falling inequality had the highest growth in household income.

This said, while income inequality in urban China has increased dramatically
in recent years, most of the growth in income inequality in rural China dates to the
1980s (see Wang et al., 2009). The emergence of the non-agricultural sector in the
1980s and first half of the 1990s, particularly the collective township and village
enterprise (CTVE, xiang-zhen qiye) sector, changed the composition of rural
income and generated higher inequality. Decollectivization gave rural households
more discretion in their production decisions. With this new found freedom and
the small land-to-person ratio available in many rural areas, it was natural for
rural labor to move into CTVEs. The emergence of CTVEs was also related to
fiscal decentralization. Fiscal decentralization placed pressure on local govern-
ments to raise revenue and sub-provincial governments invested in CTVEs, the
taxes from which became an important source of revenue. Chotikapanich et al.
(2007) found that rural income inequality starts to stabilize from the mid-1990s,
following the increase in rural income inequality in the 1980s, and that it has
largely plateaued since 2003. One explanation for stabilization in rural income
inequality is that since the mid-1990s participation rates in non-farm activity
among low-income rural households increased, resulting in a more equal distribu-
tion of income (Zhu and Luo, 2006).

7. Conclusion

We have presented a general method for creating Lorenz models of the
weighted-product form. The method rests on finding a set of parametric Lorenz
models. We find that an ideal situation is when, for each element of the set, the
ratio of its second derivative to its first derivative is increasing. We have presented
a set X of Lorenz models which possess this property. Hence, we can create a large
number of parametric Lorenz models. Moreover, our results provide evidence that
we can have models with good global approximation to the actual data. Since all
the models developed satisfy the definition of the Lorenz curve, they can be used
to generate underlying densities. We also introduced the concept of balanced fit.
The balanced fit approach provides a means of assigning weights when developing
the Lorenz curve according to whether the practitioner wants to put more empha-
sis on using the Lorenz curve as an overall measure of inequality or as a targeted
poverty index.

To illustrate the performance of our models and the concept of balanced fit,
we used data on income distribution for the United States for 1977–83, previously
used by Basmann et al. (1993) as well as income survey data collected by the State
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Statistical Bureau in Hubei province in China in 2006. We use Chinese data to
illustrate our models, given the pressing policy importance of income inequality in
China and the associated urgent need for further advancements in measuring
income inequality using grouped data. We find that our proposed models perform
well, particularly compared to popular existing Lorenz models in the literature,
and that our approach generates plausible density estimates. Our results suggest
that rural income inequality in China has been higher than urban income inequal-
ity. We have discussed some of the reasons for, as well as implications of, high
rural income inequality in China.

The most significant feature of our method is that we can increase the power
of the method by increasing the set X found. This could be an interesting topic for
further research. Another further research subject could be finding methods to
determine the most favorable model/models among the ones created in X. It could
be possible to find completely new sets, with elements possessing the same property
as the models in X, so as to obtain other sets of weighted-product Lorenz models.
Given that the main objective of this study was to examine the feasibility of using
new methods to fit income distributions to grouped data, we have not examined a
number of interesting aspects of income inequality and poverty in China. Specifi-
cally, we have used data from one province for a single year. Future research could
apply the balanced fit approach developed in this study to a broader cross-section
of data as well as examine trends in income inequality and poverty over time.
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