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ESTIMATES O F  THE AGGREGATE QUARTERLY CAPITAL STOCK 

FOR THE POST-WAR U.S. ECONOMY 

Emory University 

We construct quarterly aggregate gross and net capital stock series for the post-war U.S. economy 
using annual capital stock, capital depreciation, and capital discard figures along with quarterly 
investment series. We construct nominal and real measures of all three categories in the aggregate 
capital stock : consumer durable goods, producer durable goods, and business structures. In construct- 
ing the nominal series we take into account the changes in capital goods' prices. The series are 
constructed using four different methods. Using time- and frequency-domain techniques, we compare 
the constructed series and characterize their short-run, business cycle, and long-run cyclical properties. 
We find that the constructed series exhibit very different cyclical and shock persistence dynamics. 
Practial implications are discussed. 

Most economic time series are of accounting nature and are sampled in 
discrete time intervals. This distinguishes economic data from data generated by 
physical processes which often are recorded continuously. Some economic time 
series are sampled with relatively low frequency. For example, because of the 
nature of aggregate capital stock data and its collection method, it is only collected 
on an annual basis. However, in the empirical macroeconomic literature that 
focuses on various aspects of input-output relationship, business cycles, growth 
etc., often there is a need for a high frequency data. For example, for estimating 
a short-run aggregate production function one would ideally use quarterly, rather 
than annual data, since with low frequency data it would be impossible to capture 
any short-run phenomenon that occurs within a single period of the sampling 
interval. Similarly, in analyzing the dynamic relationship between aggregate fac- 
tors of production and output, it is preferable to look at the data using quarterly 
observations because some dynamic phenomena that perhaps take place within 
the period of a year will not be captured if annual data is used. In addition, 
from an econometric point of view, use of quarterly data instead of annual data 
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quadruples the sample size which makes empirical statistical inference more 
reliable. 

In this paper we construct quarterly aggregate gross and net capital stock 
series for the post-war U.S. economy. The series are constructed for all three 
major categories of the capital stock: consumer durable goods (henceforth CDG), 
producers durable goods and equipment (henceforth PDG), and business struc- 
tures (henceforth BS).' The period covered is 1947: 1-1991 :4. All six quarterly 
series are constructed in real and nominal terms. Although Gordon and Veitch 
(1986) have constructed quarterly capital stock estimates, the capital stock series 
reported in this paper are not identical to their series for several reasons. First, 
their series only go to 1983. Second, we are using recently revised annual capital 
stock series which significantly differ from the older series they used.2 Third, we 
adjust the gross capital stock estimates using the figures on the annual capital 
discards, which are quite significant, especially during the 1970s and 1980s. Fourth, 
we use four different techniques to construct the capital stock series. And fifth, 
our estimates of the nominal quarterly capital stock series are adjusted for quart- 
erly changes in capital goods prices which during some years were very substantial. 
The constructed quarterly series are compared to each other as well as to the 
original annual series from which they were constructed by examining their statist- 
ical and cyclical properties using time and frequency domain techniques. Consider- 
able attention is given to a comparative analysis of short-run, business cycle, and 
long-run behavior of the constructed series using univariate spectral analysis. In 
addition, we compare long-run shock persistence (i.e., unit root) properties of the 
constructed series using a frequency domain equivalent of the variance ratio test. 

The paper is organized as follows. In the next section we discuss the methodol- 
ogy used in the paper. In section 111 we describe the data set used. In section IV 
we describe and compare the constructed quarterly capital stock series using vari- 
ous time and frequency domain statistical measures. The paper ends with a brief 
summary of practical implications and some concluding remarks. 

TI. METHODOLOGY 

1. Construction of Quarterly Net Capital Stock Series 

The quarterly net capital stock series reported here are constructed using 
four different techniques. The first method is a segmented linear interpolation of 
the corresponding annual ~ e r i e s . ~  Despite the fact that linear interpolation is a 
somewhat naive procedure, in the case of capital stock series it is potentially 
useful, since time series of capital stock tend to be rather smooth and therefore 

'consumer durable goods are not usually counted as part of capital stock. In fact, as the referee 
noted, the U.S. is the only country to include consumer durable goods in capital stock. 

?he revision of the annual capital stock series followed the recent comprehensive revision of the 
National Income and Product Accounts (NIPA). In addition to the inclusion of these NIPA revisions, 
the revised capital stock data as well as the revised NlPA estimates of consumption of fixed capital, 
reflect a revision in the service lives of several types of assets. As Musgrave (1992) suggests, the 
resulting changes in the annual capital stock series are quite significant, especially after 1970. See 
Mus rave (1992) for details. 

'According to Boyer and Merzbach (1991), linear interpolation was apparently used as early as 
2000 B.C. in ancient Babylonian Mesopotamia to construct exponential tables. 



the approximation error may not be significant in general. A linear interpolation 
method is implemented by generating quarterly data points along the segmented 
straight lines connecting two consecutive annual observations. More formally, 
linearly interpolated quarterly capital stock series are constructed by taking 

with 

where i denotes the year and j denotes the quarter, K,., is the quarterly net capital 
stock for year: quarter i : j  and K, is the end of year i capital stock. 

Substituting (2) into (1) and rearranging yields an alternative representation 
of the linear interpolation formula: 

which represents the quarterly capital stock series as a linear combination of the 
annual values by defining the capital stock of year:quarter i : j  as a weighted 
average of the last year's and this year's annual capital stock series, where the 
weights within the year are changing with quarters. By construction, the above 
formula implies that the fourth quarter capital stock exactly equals the end of the 
year value. That is, Ki,,= K; for j=4.  

The second technique uses the annual capital stock data and exploits the 
capital accumulation relationship between capital stock and the corresponding 
investment series to estimate quarterly depreciation rates which vary over time. 
These depreciation rates are then used in construction of quarterly capital stock 
~ e r i e s . ~  Thus, denoting investment of year:quarter i : j  by Ii:,, and the quarterly 
depreciation rate of year i by 6,, which by assumption remains unchanged within 
the period of a year, for net capital stock series we have 

which after recursive substitution of (4), (5), and (6) into (7), and using the fact 
that K;:, = K,, yields 

where i=  1948,49, . . . ,91. Equation (8) expresses the quarterly depreciation rate, 
6,, as a nonlinear function of the last year's and this year's annual capital stock 
and this year's quarterly investment. The system of equations given in (8) are 

'?he annual depreciation estimates published by the U.S. Bureau of Economic Analysis are based 
on a straight-line formula, which assumes equal dollar depreciation over the life of the asset. 



solved for 6 ;  using Newton's iteration formula. For most years the convergence 
was achieved within 3-4 iterations, although for some years we needed as many 
as 6 iterations. Once the 6:s are determined, equations (4)-(6) are used recursively 
to estimate the quarterly capital stock. 

The third method estimates the quarterly depreciation by linearly interpolat- 
ing the annual depreciation figures. Thus, 

(9) A i i  + 0  i =  1948,49,. . . ,91; j =  l ,2 ,3 ,  and 4, 

with 

where Ai,, is the quarterly depreciation of the capital stock for year:quarter i : j  
and A; is the depreciation during year i. Next, these estimates are used along with 
the annual net capital stock and the quarterly investment series to construct the 
quarterly net capital stock series: 

(10) K  K i  - A i +  i= l948,49,. . . , 9 l ;  j =  1,2,3, and 4, 

which after substitution of (9) can be rewritten as 

where Ki,,- I = Ki- I for j =  1. Note that the comment made above on the usefulness 
of the linear interpolation applies here as well since the actual annual depreciation 
series turned out to be relatively smooth. 

The fourth method estimates the quarterly depreciation figures by assuming 
that the annual depreciation is spread equally across the four quarters of the year. 
This leads to the following estimate of the quarterly net capital stock series: 

A. 
(12) K .  I : l  . = K .  ! : ] - I  . - + I  i= 1948,49,. . . ,91; j =  1,2,3, and 4, 

4 

where Ki, ,_ ,  = Ki- for j =  1. 
It should be mentioned that by construction, with the exception of method 

three, the fourth quarter capital stock estimates will equal the corresponding 
annual values regardless of the method used. To see why method three gives a 
different estimate of the fourth quarter capital stock, let us compare the fourth 
quarter estimate from that method to the fourth quarter estimate of say, method 
four. Starting with method four, quarterly evaluation of (12) yields 



where we used the fact that Ki,,- = Ki- for j= 1. A recursive substitution of (13), 
(14), and (15) into (16) yields 

which implies that according to method four, 

That is, the end of the year (end of the fourth quarter) net capital stock equals last 
year's net capital stock plus this year's investment minus this year's depreciation. 

To derive a similar expression for method three, start with (11) to get the 
quarterly capital stock estimates, 

which after recursive substitution of (18), (19)' and (20) into (21) yields 

Comparing (22) to (17), it is clear that the two methods will yield different esti- 
mates for the fourth quarter unless A i = ; d i - ,  + ; A i .  However, for the latter to 
hold, Ai must equal -A i - ,  , which usually will not be true. An intuitive explanation 
of this finding is that for estimating quarterly depreciation figures, method four 
uses only this year's depreciation while method three uses this year's as well as 
last year's depreciation figures. 

2. Construction of Quarterly Gross Capital Stock Series 

To construct gross capital stock series, we use two methods. The first method 
uses a linear interpolation given by (1)-(3). The second technique uses the annual 
figures on capital discards, D i ,  to construct the quarterly series: 

where K i j -  = Ki- I for j= I. Here also the fourth quarter capital stock estimates 
will equal the corresponding annual values regardless of the method used. 

321 



The methods described above are used for the construction of real as well as 
nominal capital stock series. All the estimates of the nominal quarterly capital 
stock series reported here are adjusted for quarterly variations in the prices of the 
capital goods which have been quite significant during some years. The various 
construction methods used here implicitly impose a constant rate of change in the 
price of capital goods. Therefore, we multiply the nominal quarterly capital stock 
series by the factor (KPIT/KPIF), where the numerator is the quarterly implicit 
price deflator of the capital good (i.e., the true capital price index taken from the 
CITIBASE and further described below), while the denominator is the quarterly 
implicit price deflator we have constructed from the annual implicit price deflator, 
computed using the series from Musgrave (1992), under the assumption that its 
quarterly rate of change is fixed within the year. 

Although not reported, we have also constructed the quarterly capital stock 
series using perpetual inventory technique. However, the results were very unsatis- 
factory since (depending on the starting point) the time series of the capital stock 
estimated using this technique tend to increase at an unreasonably fast rate. 

The data series used in this work consists of annual nominal and real capital 
stock series of consumer durable goods, producer durable goods, and nonresi- 
dential business structures along with their price deflators. In addition, we use the 
annual depreciation, annual discard, and the quarterly investment series of these 
three categories. The source of the annual capital stock series is Musgrave (1992). 
The source of investment and their price deflator series is Citicorp (1993). The 
annual depreciation and discard figures are from the U.S. Bureau of Economic 
Analysis (BEA). A11 real figures in this paper are in 1987 dollars. All the capital 
stock data are for the end of the period. The particular series we used are listed 
below. For each series we provide exact name/location used in the original source. 

(a) Annual gross stock of CDG : Musgrave (1 992), Tables 17 and 19 (Total) 
(b) Annual net stock of CDG: Musgrave (1992), Tables 17 and 19 (Total) 
(c) Annual gross stock of PDG & BS: Musgrave (1992), Tables 5 and 7 

(Equipment, Structures) 
(d) Annual net stock of PDG & BS: Musgrave (1992), Tables 6 and 8 

(Equipment, Structures) 
(e) Quarterly investment in CDG: CITICORP (1993), Series GCD, GCDQ, 

and GDCD 
(f) Quarterly investment in PDG: CITICORP (1993), Series GIPD, GIPDQ, 

and GDIPD 
(g) Quarterly investment in BS: CITICORP (1993), Series GIs, GISQ, and 

GDIS 
(h) Annual depreciation of CDG, PDG, and BS: BEA (1992) 
(i) Annual discard of CDG, PDG, and BS : BEA (1 992) 

IV. ESTIMATION RESULTS 

In order to save space, we only report the figures of the constructed real net 
capital stock series. A complete set of tables containing the estimated quarterly 



nominal and real series of gross and net capital stock of all three categories are 
available from the authors upon request. Time varying annual depreciation rates 
estimated by solving the system of equations given in (8) are reported and analyzed 
by Levy ( 1994). 

1. Visual Comparison of the Constructed Series 

In order to compare the capital stock series constructed using the four differ- 
ent methods described in section 2, Table 1 (as an example) presents the estimated 
quarterly real net capital stock series of consumer durable goods constructed using 
the four methods. 

As expected, the end of fourth-quarter values of the capital stock series are 
identical for the methods of segmented linear interpolation, numerical iteration, 
and equal quarterly depreciation. The end of fourth-quarter values for the series 
generated using the method of interpolated depreciation are different as predicted 
by equation (22). 

In Table 2 we present the estimated quarterly real net capital stock series of 
producer durable goods. Similarly, in Table 3 we present the estimated quarterly 
real net capital stock series of nonresidential business structures. 

The correlation coefficient between the constructed quarterly capital stock 
series is relatively high (between 0.95-0.99). Therefore, in order to highlight the 
differences between the four methods, on Figure 1 we plot the four estimated 
series of real, net capital stock of consumer durable goods measured in first 
differences for the period 1989 : 1- 1991 : 4. A visual comparison of the series reveals 
that segmented linear interpolation of the annual capital stock series (method 
one) yields the least volatile quarterly series, while segmented linear interpolation 
of the annual depreciation series (method three) yields the most volatile quarterly 
series. In terms of relative volatility, the other two series fall between these two 
extremes.' 

In order to say more about time series properties of the quarterly capital 
stock series constructed by various methods, we consider three statistical measures. 
One is the autocorrelation function, p,, which is the correlation coefficient of the 
current value of the series with the same series lagged k periods. In this paper we 
consider k= I ,  2, . . . ,24. The second measure is spectral density function. The 
third measure is a frequency domain version of the variance ratio test often 
used to analyze shock persistence properties of economic time series. Unlike the 
autocorrelation function which is estimated in time domain, spectral density func- 
tion is defined in frequency domain. Spectral analysis of the estimated capital 
stock series can be useful since spectral density can provide us with information 
on the cyclical properties of time series. Below we briefly explain the concept of 
spectral density. For a more detailed discussion of frequency domain methods see 
Koopmans ( 1974). 

 he plot generated by segmented linear interpolation of the annual capital stock series has flat 
portions since the interpolation is essentially done by adding to each quarterly value 1/4 of the linear 
distance between the annual observations. Therefore, when we compute the first difference of the 
interpolated quarterly series, within the interpolation period (a year) it should remain unchanged. 



TABLE I 
ESTIMATED QUARTERLY NET CAPITAL STOCK: CONSUMER DURABLE GOODS 

(billions of 1987 dollars) 

Linear Numerical Interpolated Equal Quarterly 
Time Interpolation Iteration Depreciation Depreciation 



TABLE I4ontinued 

Linear Numerical Interpolated Equal Quarterly 
Time Interpolation lteration Depreciation Depreciation 



TABLE I+ontinued 

Linear Numerical Interpolated Equal Quarterly 
Time Interpolation Iteration Depreciation Depreciation 



TABLE IL-continued 

Linear Numerical Interpolated Equal Quarterly 
Time Interpolation lteration Depreciation Depreciation 

Source: Authors' calculations. 

2. Variance Decomposition in Frequency Domain 

Spectral analysis is based on the idea that a stationary series can be decom- 
posed into a sum of sine and cosine waves of different frequencies and amplitudes. 
Just as musical tones are constructed by a superimposition of pure harmonics, or 
light of various colors is composed of a mix of monochromatic components, in 
frequency domain analysis we assume that an observed stochastic process is actu- 
ally made up of many (possibly infinite) cyclical components of various wave- 
length and amplitude. We are interested in determining how much of the total 
variance ("power") of the series is determined by each cyclical (or frequency) 
component. 

Consider a covariance stationary real valued univariate time series, 
y(t), -co < t < co. Its autocovariance function is given by 

y(r) = lim 1 j y(t + r)y(t) dt 
~ - . m 2 T  -T 

which exists and is finite for every r by assumption. By changing variables it is easy 
to show that y ( z )  = y(-r), which makes past observations useful in describing the 
present or the future. 

The spectrum of the series y(t) is defined as the Fourier transform of its 
autocovariance function, and is given by polar representation 

where w is the frequency and is measured in cycles per p e r i ~ d . ~  Sincef;.(w) is 
symmetric about w =0 ,  it is customary to limit the analysis to the frequency 

bThus, the autocovariance function is the inverse Fourier transform of the spectrum. That is, 
y ( r )  =JymJ,f,(o) e"" do. Therefore, autocovariance function and spectrum are equivalent and if either 
is known, the other can be determined exactly. However, as Koopmans (1974) argues and as we 
demonstrate below, these functions display different aspects of the covariation information about the 
time series, and some dynamic and cyclical features of the data are easier to identify and interpret in 
the frequency domain. 



TABLE 2 
Estimated Quarterly Net Capital Stock: Producer Durable Goods 

(billions of 1987 dollars) 
-- 

Linear Numerical Interpolated Equal Quarterly 
Time Inter~olation Iteration Depreciation Depreciation 



TABLE 2--continued 

Linear Numerical Interpolated Equal Quarterly 
Time Interpolation Iteration Depreciation Depreciation 



TABLE 2L-continued 
- - -- 

Linear Numerical Interpolated Equal Quarterly 
Time Interpolation Iteration Depreciation Depreciation 



TABLE 2Lcontinued 

Linear Numerical Interpolated Equal Quarterly 
Time Interpolation Iteration Depreciation Depreciation 

1990.1 2,167.25 
1990.2 2,179.60 
1990.3 2,191.95 
1990.4 2,204.30 
1991.1 2,210.73 
1991.2 2,217.15 
1991.3 2,223.58 
1991.4 2,230.00 

Source: Authors' calculations. 

interval 0 I w I n. Note that the area under the spectrum exactly equals the uncon- 
ditional variance of y( t ) .  That is, j"lrf,.(w) dw = y(O), which is the variance of the 
series as (24) indicates. Therefore, the area under the spectral density between 
any two frequencies measures the portion of the variation in the series that is 
due to cyclical components between those two frequencies. This implies that the 
spectrum of a time series tells us how much each frequency component contributes 
to the total variance of the series. In other words, the spectrum of a series decom- 
poses the total variation in the time series by the cycle length of various periodic 
components. An additional feature practitioners often emphasize in spectral 
analysis is the presence of peaks in the spectrum which indicates an existence of 
statistically important periodicities in the time series. 

By definition, frequency is reciprocal of the periodicity. The latter measures 
the number of time units required for completion of a cycle. Each frequency 
corresponds to a particular periodicity (or a cycle length) according to the map- 
ping, p = 2n/w, where p which denotes "period," measures the length of a cycle. 
For example, with quarterly data, the frequency 0 =0.52 corresponds to a 3- 
year (12-quarter) cycle while the frequency o =0.20 corresponds to a 8-year (32- 
quarter) cycle. Below, on the figures displaying estimated spectral densities, in 
addition to the standard frequency scale we also present the corresponding time 
scale indicating periodicity in quarters. (In Figure 11, the periodicities are 
measured in years since there we use annual data.) 

Following a common practice in macroeconomic applications of spectral 
analysis, we divide the frequency interval 0 5 w ~n into three segments: long-run 
frequency band, business cycle frequency band, and short-run frequency band. 
The cut-off points of the frequency bands we use are identical to those used in 
modern business cycle literature. For example, Prescott (1986) defines business 
cycles as 12-32 quarter cycles. Therefore, when we use quarterly data, we identify 
the frequency interval 0.20 1 w 10.52 as a business cycle frequency band. The 
frequencies below the business cycle frequency band (w 5 0.20) correspond to the 
long-run, while the frequencies above the business cycle frequency band (w 2 0.52) 
correspond to the short-run.7 In order to make the plottings of the spectral esti- 
mates easier to interpret, on each figure we also display vertical guidelines which 
identify these cut-off points. 

7 ~ h e n  we use annual data, these cutoff points are w 50.78 and w22.10,  respectively. 



TABLE 3 

Estimated Quarterly Net Capital Stock: Business Structures 
(billions of 1987 dollars) 

- - -  - - - 

Linear Numerical Interpolated Equal Quarterly 
Time Interpolation Iteration Depreciation Depreciation 



TABLE 3--continued 

Linear Numerical Interpolated Equal Quarterly 
Time Interpolation Iteration Depreciation Depreciation 



TABLE 3L-continued 

Linear Numerical Interpolated Equal Quarterly 
Time Interpolation Iteration Depreciation Depreciation 



TABLE 3--continued 

Time 
Linear 

Interpolation 
Numerical 
Iteration 

2,531.67 
2,544.84 
2,557.66 
2,568.30 
2,577.33 
2,585.30 
2,590.76 
2,595.00 

Interpolated 
Depreciation 

2,531.39 
2,544.46 
2,557.37 
2,568.25 
2,577.97 
2,586.43 
2,592.22 
2,596.59 

Equal Quarterly 
Depreciation 

2,531.41 
2,544.50 
2,557.41 
2,568.30 
2,577. I8 
2,585.10 
2,590.62 
2,595.00 

Source: Authors' calculation. 

The spectral estimates reported here are obtained by first estimating periodo- 
grams of the series. However these periodograms are inconsistent estimates of 
spectrum since they tend to be very erratic in the neighborhood of the frequencies 
considered in estimation. Therefore, the estimated periodograms are smoothed in 
order to get consistent estimates of the spectra. Smoothing is usually done by 
taking the weighted integral of the periodogram ordinates considered. Several 
weight structures, also called lag windows, have been proposed in this literature. 
The main difference between the various lag windows is in the way they generate 
the weights. For example, the Daniel1 window, which is a truncated rectangular 
window, implicitly assigns equal weights to the autocovariances in the neighbor- 
hood of the frequencies considered and zero weight thereafter. 

In this paper the smoothing is done using three different lag windows: 
Bartlett's, Tukey's, and ~ a r z e n ' s . ~  However, since all three windows yield amost 
identical results, we only report the spectral estimates derived using Bartlett's lag 
window which assigns linearly decreasing weights to the autocovariances in the 
neighborhood of the frequencies considered and zero weight thereafter.g The num- 
ber of ordinates, m, which is the number of frequency points for which the spec- 
trum is estimated, is set using the rule m=2&, where n is the number of 
observations. Thus, we estimate Am,), where w, = j ~ / m ,  and j =  0, 1,2, . . . , m. In 
addition to point estimates, we have also computed the confidence interval using 
asymptotic standard errors for each spectral estimates reported in this paper. The 
confidence intervals are plotted on each figure along with the estimated spectral 
density functions. 

3.  Comparison of the Constructed Series Using Autocorrelation and Spectral 
Density Functions 

Figure 2 displays the estimated autocorrelation function of the quarterly 
consumer durable goods (measured in first differences) constructed by segmented 
linear interpolation of the annual capital stock series (method 1). Figure 3 displays 
the estimated spectral densities of the same series. Similarly, Figures 4-9 display 

'see Koopmans (1974) for technical details. 
 he estimated spectral densities derived using Tukey's and Parzen's windows are available upon 

request. 



........---...*.... Method 2: Numerical Iteration 
- - - -  Method 3: Linearly Interpolated Depreciation 
- . - - - . - . Method 4: Equal Quarterly Depreciation 

, I 
Figure 1 .  Four Different Estimates of Consumer Durable Good Series (in First Differences), U.S., 

1989:l-1991:4 

the estimated autocorrelation and spectral density functions of the quarterly con- 
sumer durable goods series constructed by the other three methods. The dotted 
lines on these figures indicate a 95 percent confidence interval (f 2 S.E.). 

According to Figure 2, the quarterly consumer durable goods series con- 
structed by segmented linear interpolation of the annual capital stock series 
(method 1) is characterized by a weak seasonal pattern as indicated by the value 



Figure 2. Autocorrelation Function (+2 S.E.) of Quarterly Consumer Durable Good (CDG) Series 
Constructed by Linear Interpolation of the Annual Data (Method I), US . ,  1948: 1-1991:4. k =  

number of lags 

of autocorrelations at lags 4,12, and 16. Other than these seasonals, the autocorre- 
lations are not different from zero, which is an indicator of a white noise process. 

This interpretation is not very consistent with the estimated spectrum shown 
on Figure 3. The spectrum should contain a peak at frequency w = 1.57, which 
would correspond to a 4-quarter cycle. The estimated spectrum, however, attains 
a local minimum at that frequency, suggesting a low power concentration at that 
frequency. The reason for this failure of the spectrum to identify the periodic 
structure of the linearly interpolated series might be the finding reported recently 
by Dezhbakhsh and Levy (1994) that segmented linear interpolation may intro- 
duce a "periodic nonstationarity" in the generated series. With the exception of 
this particular frequency, the flatness of the spectrum indicates that each specific 
frequency in the business cycle and short-run frequency band contributes equally 
to the variation in the constructed capital stock." From comparing the areas 
under the spectrum at each of the three specified frequency bands on Figure 3, it 
is clear that most of the variation in the constructed CDG series is caused by 
short-run fluctuations and relatively very little variation is caused by long-run or 
business-cycle fluctuations. 

Figures 4 and 5 display the estimated autocorrelation and spectral density 
functions of the quarterly consumer durable goods series constructed by numerical 
iteration of capital accumulation equation (method 2). Here the autocorrelation 
function displays no clear pattern. In fact, for most lags it is not different from 

''A pure white noise process has a completely flat spectrum which means that all frequency 
components contribute equally to the variation of the process. 



- SpectralDensity ..---.-. 95% Confidence Interval 

Figure 3. Estimate of Spectral Density Function (f 2 S.E.) of Consumer Durable Good (CDG) Series 
Constructed by Linear Interpolation of the Annual Data (Method I), US. ,  1948: 1-1991 :4 

zero. However, the spectral density contains significant peaks at frequencies o = 
1.05, o = 2.10, and w = 3.14. These frequencies correspond to 6, 3, and 2 quarter 
cycles. Since the original capital stock data used here is annual, the reason for 
these periodicities might be the quarterly investment series we used with this 
method. 

To examine this possibility, we estimate the spectral density function of the 
quarterly CDG investment series for the 1948 : 1- 1991 : 4 period. As the spectral 
density plot displayed in Figure 5a indicates, it indeed contains peaks in the 
neighborhoods of those frequencies. Overall, the spectrum in Figure 5 indicates 
the most of the variation in the constructed CDG series is due to short-run 
fluctuations. 

Figures 6 and 7 display the estimated autocorrelation and spectral density 
functions of the quarterly consumer durable goods series constructed by seg- 
mented linear interpolation of the annual depreciation series (method 3). Here 
the autocorrelation displays a strong seasonal pattern as indicated by high and 
statistically significant values of estimated autocorrelations at the seasonal lags 4, 
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Constructed by Numerical Iteration of Capital Accumulation Equation (Method 2), U.S., 1948: 1- 
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8, 12, etc. The autocorrelations are also significant at lags 2, 6, 10, 14, and 18, 
though they are much smaller than the seasonals. 

This pattern is consistent with the estimated spectrum in Figure 7 which 
contains a peak at frequency w = 1.57, which corresponds to a 4-quarter cycle. 
The concentration of a relatively large spectral mass around the 4-quarter cycle 
emphasizes the importance of this cycle in the total variation of the series." 
Although the spectrum appears to have peaks also at w = 1.05, w = 2.10, and w = 

2.50 (which correspond to 6, 3, and 2;-quarter cycles), these peaks are relatively 
minor. Similar to the previous spectral densities, Figure 7 also indicates that most 
of the variation in the constructed CDG series can be attributed to short-run 
fluctuations. 

Figures 8 and 9 display the estimated autocorrelation and spectral density 
functions of the quarterly consumer durable goods series constructed by assuming 
equal quarterly depreciation (method 4). Here the autocorrelation function dis- 
plays a complex pattern. It is statistically significant at lags 2,4, 6, 10, 14, and 16. 

The spectral density function shown in Figure 9 contains significant peaks at 
frequencies w = 1 .O5, w = 1.57, w = 2.10, and w = 2.88, which correspond to 6, 4, 
3, and 2Cquarter cycles. As with method 2, the reason for these periodicities 
might be periodic behavior of the quarterly CDG investment series we used. As 

"AS noted above, linearly interpolated capital stock series (method 1) also exhibit a 4-quarter 
cycle. This finding is not a coincidence. In a study by Dezhbakhsh and Levy (1994), it is shown that 
the moments of linearly interpolated series will exhibit a significant periodic (in this case seasonal) 
variation. 
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Figure 5. Estimate of Spectral Density Function (f 2 S.E.) of Consumer Durable Good (CDG) Series 
Constructed by Numerical Iterations of Capital Accumulation Equation (Method 2), U.S., 1948: 1- 

1991:4 

with previous spectral densities, here also we find that most of the variation in 
the constructed quarterly CDG series is explained by short-run fluctuations. 

For comparison, we also estimate the autocorrelation and spectral density 
functions of the differenced original annual consumer durable goods series which 
we use with all four methods. These functions are displayed in Figures 10 and 11. 
According to Figure 10, the estimated autocorrelation is not statistically significant 
at any of the 24 lags considered. In terms of the properties of the autocorrelation 
function, the quarterly series constructed using numerical iteration of the capital 
evolution equation (method 2) exhibits a behavior most similar to the behavior 
of the annual series in comparison to the series constructed using the other three 
methods. 

Since the annual data has a lower frequency than the constructed quarterly 
data, the comparison of the spectral density functions should be done carefully. 
This is because now cyclical periodicities are measured in years instead of quarters. 
In addition, the shortest cycle that can be identified with spectral analysis is two- 
time-units long, i.e., for the highest frequency w = a, we have 2n/w = 2a/n = 2. 
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Figure 5a. Estimate of Spectral Density Function ( ~ k 2  S.E.) of the Consumer Durable Goods Invest- 
ment, U.S., 1948: 1-1991:4 

Therefore, with annual data the highest observable frequency corresponds to a 2- 
year cycle while with quarterly data it corresponds to a 2-quarter cycle.12 Conse- 
quently, the spectrum displayed in Figure 11 contains no information on the 
cyclical dynamics of the capital stock series for periodicities less than 8 quarters 
(=2 years). This means that the information contained in the entire frequency 
band O l w  s n  in Figure 1 1 ,  corresponds to the information contained in the 
frequency band O<w 10.78 in Figures 2, 4, 6, and 8.13 

Thus, comparing the values as well as the shapes of all four quarterly spectral 
density functions in the frequency band 0 10 10.78 with the annual spectrum in 
the frequency band 0 I w < n, it seems that the spectrum displayed in Figure 3 is 
closer to the annual spectrum in comparison to the other three. With the exception 
of the zero-frequency band, the quarterly spectrum in the frequency range 
0 < w 10.78 in Figure 3 fluctuates around 1.05. According to Figure 11, the spec- 
trum estimated using annual data also fluctuates around that value with the excep- 
tion of the o = O  and o = n  frequency bands. In contrast to this pattern, the 

12 This is known as Nyquist frequency. 
13 This is why the location of the vertical lines on Figure I 1  differs from the other figures. 
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Figure 6. Autocorrelation Function (f 2 S.E.) of Quarterly Consumer Durable Good (CDG) Series 
Constructed by Linear Interpolation of the Annual Depreciation Data (Method 3), U.S., 1948: 1- 

1991 :4. k=number of lags 

spectral density functions displayed in Figures 5, 7, and 9 remain below 1.05 in 
the frequency band 0 I w I 0.78. 

On the other hand, if the constructed quarterly capital stock series is to be 
used in studying some short-run phenomenon, and if we believe that the true 
quarterly series (which we do  not have) is a smooth series like its annual coun- 
terpart, then we would expect the constructed series to exhibit low variation in 
the high, or short-run, frequencies. This suggests that we can rank the constructed 
quarterly capital stock series by measuring the areas underneath the estimated 
spectral density functions at the short-run frequency band, w 20.52, by using a 
numerical integration technique. Following this line of thought, we computed the 
areas underneath the estimated spectral density functions in the short-run fre- 
quency bands on figures 3, 5, 7, and 9, and found that they equal 21.92, 24.56, 
26.78, and 25.32, respectively. Thus, we see that the quarterly series constructed 
using method I (segmented linear interpolation) and method 2 (numerical itera- 
tion of capital evolution equation) have a lower short-run variation in comparison 
to methods 3 and 4. Therefore, for short-run analysis we would choose the quart- 
erly capital stock series generated by either method 1 or method 2. 

4. Comparison of the Constructed Series Using Variance Ratio Test 

It would be interesting to compare long-run persistence characteristics of the 
constructed quarterly time series with the persistence displayed by the annual 
series. For this we use a frequency domain equivalent of a measure of persistence 
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Figure 7. Estimate of Spectral Density Function (f 2 S.E.) of Consumer Durable Good (CDG) Series 
Constructed by Linear Interpolation of the Annual Depreciation Data (Method 3), U.S., 1948:l- 

1991 : 4  

suggested by Cochrane (1988) as a substitute to more standard unit root tests. 
The measure is based on the variance ratio statistic, V: 

where the numerator measures the variance of cumulative growth over a horizon 
of many years while the expression in denominator is the variance of 1-year 
growth. Cochrane (1988) proves that the numerator of variance ratio statistic is 
asymptotically equivalent to the Bartlett's estimate of spectral density at frequency 
zero. That is, 

If(,)= lim {ivar [y(t)-y(t-k)] 
k-r m 

where f f ( ~ )  denotes the Bartlett's estimate of spectral density given in (25). 
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Figure 8. Autocorrelation Function (f 2 S.E.) of Quarterly Consumer Durable Good (CDG) Series 
Constructed by Assuming Equal Annual Depreciation (Method 4), US. ,  1948: 1-1991 14. k=number 

of lags 

The denominator in (26) can be estimated by computing unconditional vari- 
ance of differenced y,. Therefore, computing the Bartlett's estimate of spectral 
density at the zero-frequency and standardizing it by the unconditional variance 
of the differenced series will yield a consistent estimate of Cochrane's variance 
ratio statistic. Bartlett's estimate of standardized spectral density of the con- 
structed quarterly CDG series is shown in figures 3, 5, 7, 9, and 11 by the solid 
line and their zero frequency value for methods 1, 2, 3, and 4 equals 0.64, 0.30, 
0.17, and 0.32, respectively. In contrast to this, the corresponding value for the 
annual series equals 0.38.'~ This means that in terms of long-run shock persistence 
properties the constructed quarterly capital stock series differ substantially from 
each other as well as from the original annual series. The series constructed using 
method 1 exhibits more shock persistence than the original series, while the series 
constructed by the other three methods exhibits less shock persistence than the 
original series. 

In a recent study, Granger (1991) shows that shock persistence properties of 
time series are preserved under temporal aggregation. That is, if a series is gener- 
ated over a one-time interval (say, a month) but is recorded over a longer interval 
(such as a quarter), the shock persistence properties should remain unaltered. If 
this is true for stock series also, then it seems that the quarterly capital stock 
series constructed by method 2 (numerical iteration of capital evolution equation) 

14 Some of the differences between quarterly and annual spectral density functions may be due to 
the difference in the number of observations used in estimating them: 44 annual vs. 176 quarterly. 
For example, Choi (1992) finds that using the data generated by aggregating subinterval data reduces 
the power of augmented Dickey-Fuller tests. 
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Figure 9. Estimate of Spectral Density Function (f 2 S.E.) of Consumer Durable Good (CDG) Series 
Constructed by Assuming Equal Annual Depreciation (Method 4), US . ,  1948: 1-1991 :4 

and method 4 (equal annual depreciation) yield series with long-run shock persist- 
ence properties that are very similar to the shock persistence properties of the 
original annual data. Overall, it is clear that the four methods used here produce 
series with very different long-run shock persistence properties. 

In this paper we construct quarterly nominal and real, gross as well as 
net capital stock series for the post-war U.S. economy. The series constructed 
include all three categories of the aggregate capital stock: consumer durable 
goods, producer durable goods and equipment, and nonresidential business 
structures. 

The quarterly capital stock series are constructed using four different pro- 
cedures. The first is a segmented linear year-to-year interpolation technique. The 
second technique exploits the dynamic relationship between the capital stock and 
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Figure 10. Autocorrelation Function ( f 2  S.E.) of the Original Annual Consumer Durable Good 

(CDG) Series, U.S., 1948-91. k= number of lags 

the corresponding capital investment series and uses annual beginning-of-the- 
year and end-of-the-year capital stock data to estimate the implied quarterly 
depreciation rates for all three categories of the aggregate capital stock by numeri- 
cal iteration over the depreciation rates until a convergence is achieved.l5 These 
depreciation rates are then used along with the quarterly investment and the 
annual capital stock series to construct quarterly capital stock series. The third 
method estimates the quarterly depreciation by linearly interpolating the annual 
depreciation figures which are then used along with the annual capital stock and 
the quarterly investment series to construct the quarterly capital stock series. The 
fourth method estimates the quarterly depreciation figures by assuming that the 
annual depreciation is spread equally across the four quarters of the year. 

In order to compare and contrast the constructed quarterly capital stock 
series to each other and to the original annual series from which they are con- 
structed, we compare the time series properties of these series. For this we use a 
one-time domain measure, namely the autocorrelation function, and two fre- 
quency domain measures. The latter are, (1) the spectral density function, which 
allows us to decompose the total variation in the series by frequency (short-run, 
business cycle, and long-run), and (2) the frequency domain equivalent of the 
variance ratio statistic often used to measure a long-run shock persistence (i.e., 
unit root) properties of the time series. 

IS For the 1948-91 period, the estimated average depreciation rates of consumer durable goods, 
producer durable goods, and nonresidential business structures are 0.24, 0.12, and 0.05, respectively 
[see Levy (1994) for more details]. Gordon and Veitch's (1986) estimated average depreciation rates 
of consumer durable goods, producer durable goods, and nonresidential business structures for the 
1947-83 period are 0.20, 0.14, and 0.06, respectively. 
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Figure 11.  Estimate of Spectral Density Function (f 2 S.E.) of the Original Annual Consumer Durable 
Good (CDG) Series, U.S., 1948-1991 

The constructed series share one cyclical characteristic: most of the variation 
in the constructed series is caused by short-run fluctuations and relatively very 
little variation is caused by long-run or business-cycle fluctuations. Other than 
this, the constructed capital stock series exhibit markedly different statistical 
behavior. In particular, using the above time and frequency domain measures, we 
demonstrate that the generated series exhibit very different cyclical dynamics. For 
example, we show that the generated series are characterized by different short- 
run and business cycle periodic patterns. Interestingly, we find that out of the four 
methods examined, the simplest method, namely segmented linear interpolation of 
the annual capital stock series, yields quarterly series with business cycle properties 
that are very similar to the properties we find in the original annual data. 

Using the frequency domain equivalent of Cochrane's (1988) variance ratio 
test, we show that the constructed series are characterized by different long-run 
shock persistence properties. This is somewhat surprising because one would 
expect that an increase in the data frequency from annual to quarterly would alter 
short-run and perhaps business cycle dynamics of the original series, but not 
necessarily long-run behavior. This is especially true because by construction, the 



end-of-the-fourth-quarter capital stock values coincide with the corresponding 
end-of-the-year annual values.16 

Although it is fair to conclude that the findings reported in this paper are 
mixed, the usefulness of the quarterly capital stock series constructed here may 
still be ranked based on the results of the statistical comparison discussed in 
section IV. If the goal is to study some kind of long-run phenomenon, then our 
preferred method is the method of numerical iteration (method 2). This is because 
method 2 uses a well-established capital accumulation relationship and does not 
involve any statistical approximation of the type used with other methods. In 
addition, since recent studies (e.g., Granger, 1991) have shown that temporal 
aggregation of time series should not alter the shock persistence properties of the 
series, the estimated value of the frequency domain version of the variance ratio 
statistic can be used to rank the constructed series. According to our findings, the 
quarterly capital stock series constructed by method 2 exhibits long-run shock 
persistence properties that is very close to the shock persistence properties of the 
original annual data. 

If, on the other hand, the goal of using quarterly capital stock series is to 
examine some short-run phenomenon, then none of the four methods used here 
seem to be clearly superior to the rest. However, if we belive that the true quarterly 
capital stock series (i.e., the stock of capital actually in place in each quarter) 
contains no jumps and is rather smooth, then its spectral density function will show 
a low power concentration underneath the spectrum at short-run frequencies. This 
will indicate that most of the variation in the existing stock of capital is due to 
long-run and business cycle frequencies, and very little variation is due to short- 
run frequencies. 

Following this line of thought, we compared the constructed quarterly capital 
stock series by comparing the areas underneath the estimated spectral density 
functions at the short-run frequency bands in figures 3, 5, 7, and 9. Numerically 
integrating the areas underneath the spectral density functions, we find that the 
quarterly series constructed using method 1 (segmented linear interpolation) and 
method 2 (numerical iteration of capital evolution equation) have a lower short- 
run variation in comparison to methods 3 and 4. Thus, in choosing a method for 
constructing a quarterly capital stock series, the frequency domain differences 
found between the methods used here should be taken into account, especially if 
the constructed series are used in empirical statistical analysis.17 

In our view, the quarterly capital stock series constructed here are good 
estimates of the true capital stock data because of the relative smoothness of the 
capital stock series and also because, by construction, the end-of-the-fourth- 
quarter capital stock values coincide with the corresponding end-of-the-year 

16 Method 3 is obviously an exception as was shown in Section I1 of the paper. It should be noted 
that since we use the annual capital stock series constructed by the BEA as a benchmark for construct- 
ing quarterly series, our capital stock and depreciation series are conditional on the BEA's estimates. 
Note that the capital stock series used here differ from the less known capital "input" series constructed 
by the U.S. Bureau of Labor statistics since 1983. The latter is designed to measure capital services 
and thus is more suitable for productivity studies. 

17 An extension of this study (Levy, 1994) compares the constructed capital stock series by estimat- 
ing time varying value-added aggregate production functions for the post-war U.S. economy using 
the constructed capital stock series along with the aggregate labor input series. 



annual values. In the future, it may be worthwhile to use similar techniques to 
construct capital stock series at a more disaggregated level. 
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