
Review of Income and Wealth 
Series 35, Number 2, June 1989 

GROSS AND NET CAPITAL, AND THE FORM OF THE SURVIVAL 

FUNCTION: THEORY AND SOME NORWEGIAN EVIDENCE 

Department of Economics, University of Oslo 

ERLING HOLMBY A N D  @YSTEIN OLSEN 
Central Bureau of Statistics, Norway 

In this paper we discuss the empirical measurement of capital stocks derived from data on gross 
investment. Two capital concepts are involved: gross capital-representing the capital's capacity 
dimension-and net capital-representing its wealth dimension. A brief summary of their components 
is presented. 

The data base consists of long series of ~onveg ian  national accounts data for gross investment 
at a disaggregated level of sector classification and for 1-3 capital categories within each sector. 
S u ~ i v a l  functions, representing the process of retirement and decline in efficiency of capital units 
over time, with different curvature (concave, convex) and non-zero interest rates for the discounting 
of future capital service flows are considered. The effects of these parameters on the calculated gross 
and net capital stocks in the years 1956-82 as well as on the implied replacement and depreciation 
rates and rates of return are discussed. 

The question of how to measure real capital stocks and flows of capital 
services is frequently discussed in economic literature (Johansen and Sldrsveen, 
1967; Hall, 1968; Hicks, 1969; Jorgenson, 1974). The reason is that time series 
of these variables are required in important fields of economic research, such as 
studies of productivity and producer behaviour, analyses of profitability and 
national accounting. As recognized by several authors, real fixed capital has at 
least two "dimensions." First, it may be interpreted as a capacity measure, i.e. a 
representation of the potential volume of capital services which can be "pro- 
duced" by the existing capital stock at a given point of time. Second, it is a wealth 
concept; capital has a value which is derived from its ability to produce capital 
services today and in the future. In Bildrn (1983) a theoretical framework is 
introduced which distinguishes between two capital concepts: Gross capital, 
according to the definition used in this paper measures the instantaneous produc- 
tive capacity of the capital objects, whereas net capital indicates the accumulated 
prospective capacity of the capital stock. Over the years, the standard representa- 
tion of the retirement process for capital in the literature has been the exponential 
decay assumption. This has at least two implications which can be contested 
partly from a theoretical, partly from an empirical point of view. First, it implies 
that a constant share of the capital stock is retired each year. Second, it has the 
particular property that gross capital and net capital coincide numerically. An 
interesting research problem, not least from the point of view of national account- 



ing, is to investigate the consequences of relaxing this rigid assumption about 
the survival function of the capital. 

In this paper, we present and discuss, under different assumptions about the 
retirement pattern, series of gross and net capital stocks calculated from invest- 
ment data from the Norwegian national accounts. This is a database which is 
particularly well suited to this kind of investigation, since it contains long series 
of investment (back to the nineteenth century for some categories) at a fairly 
detailed level of sector classification, and it also distinguishes between different 
kinds of capital. The estimated capital data are furthermore used to calculate 
derived macroeconomic variables, such as productivity and rates of return to 
capital. A main purpose is to investigate the sensitivity of these measures and 
their cyclical behaviour with respect to the form of the survival function of the 
capital-a problem that, to our knowledge, has not received much attention in 
the literature. 

We have divided the paper into five sections. In the next section, the 
theoretical framework and the basic concepts are established. The four chosen 
retirement processes are presented in section 3, while in section 4 we provide an 
overview of the investment data used and present the empirical results. Finally, 
section 5 contains concluding remarks and suggestions for further research. 

The concept of gross capital can be defined straightforwardly from a sequence 
of gross investment figures and assumptions of how the productive capacities of 
the capital objects decline over time. In the following, J ( t )  denotes the quantity 
of capital invested at time t, measured in physical units or as a quantity index. 
The physical wear and tear of the capital units is described in a traditional way 
[see e.g. Johansen and Sorsveen (1967) and Jorgenson (1974)l by introducing 
the technical survival function B(s), expressing the proportion of an investment 
made s periods ago which still exists as productive capital. It represents both 
the loss of efficiency of existing capital units and the physical retirement of old 
capital goods.' The following restrictions are imposed on this function: 

0 I B(s) 5 1, B1(s) I 0 for all s r 0, 
(1) 

B(O)=l, limB(s)=O. 
S ' 'x 

The volume of capital which is s years of age at time t is K(t, s )  = 

B(s)J(t - s). The gross capital stock at time t is obtained simply by aggregating 

'Although the distinction between different capital vintages is of major importance in our 
theoretical model, this does by no means imply that the presented formal framework fits into any 
type of "vintage production model," e.g. the putty-clay model suggested by Johansen (1959). A 
vintage production model is characterized by the fact that there is (i) a specific technology attached 
to each vintage of capital goods and (ii) limited substitutability between capital goods belonging to 
different vintages. The concepts and assumptions in this paper are, on the contrary, implicitly related 
to or derived from a neoclassical production technology, in which (i) only the total, accumulated 
capital stock is specified as argument in the production function for the sector as a whole, reflecting 
the underlying assumption of perfect substitutability between capital vintages, and (ii) perfect markets 
exist for both new and old capital objects. 



over capital vintages, i.e. 

(2) K ( t)  = K (t,s) ds = B(s) J ( t  - s )  ds. lorn lo* 
In accordance with the definition of B(s), gross capital is a technical concept; 
K( t )  represents the current productive capacity of the total capital stock at time 
t. Thus, gross capital, or the services produced by this stock, is the relevant 
argument in a neoclassical production function. Its age distribution is irrelevant 
to the description of the technology. 

Related to the gross capital stock is the volume of retirement at time t, D( t ) ,  
which is, by definition, the difference between gross investment and the increase 
in the (gross) capital stock. An expression for D ( t )  can be found by differentiating 
(2) with respect to t ,  which gives 

f m  

where b(s) = - Br(s) indicates the structure of the scrapping process. 
Formulae for gross capital and retirement similar to (2) and (3) can be 

found in e.g. Jorgenson (1974) and Hulten and Wykoff (1980). Unfortunately, 
the terminology does not seem to be consistent in the literature. Some authors 
[e.g. Johansen and Sorsveen (1967) and Steele (1980)l define gross capital as 
the cumulated volume of past gross investment flows, without adjusting the 
remaining stock for physical outwear or efficiency loss. This definition is 
equivalent to (2) if the survival profile is of the simultaneous retirement ("one- 
horse-shay") type, i.e. if the productive capacity of the capital units actually 
remain constant (and full) over their lifetime (see below). The definition (2) is 
a more general and for empirical purposes a more interesting one, since it also 
contains other structures of capital retirement. 

While gross capital expresses the current productive capacity of the capital 
stock, our definition of net capital is related to the value dimension of the capital. 
The value concepts to be introduced are implicitly based on the assumption that 
there exist well-organized markets for capital goods, where both new and old 
capital goods are traded. The market value of the capital objects will, in general, 
reflect the cost of producing new capital goods on the one hand, and the producers' 
expectations about future productivity on the other. For old capital units, it is 
the service flow that they are expected to produce during their remaining life-time 
that matters. Thus, it is reasonable to assume that capital prices are decreasing 
functions of the age of the capital objects. 

The price of a capital unit which is s years old at time t is in the following 
denoted by q(t, s).  For new capital installed at time t the simplifying notation 
q( t )  = q(t, 0) is applied. The value of capital of age s may then be written as 
V(t, S )  = q(t, s )K( t ,  s), and aggregating over all vintages we get the total value 
of the capital stock at time t ,  i.e. 

Our next step is to decompose the current market value into a price and a quantity 



component in order to obtain a measure for the capital value that is not affected 
by changes in the general price level. It is then necessary to introduce specific 
assumptions of how capital prices vary with age, s, in order to eliminate the s 
index on the price variable q(t, s). In this paper, following Bi$rn (1983), the 
specific assumption made is that the relative prices of capital units of different 
ages perfectly reflect the differences in their prospective service flows. More 
precisely, the price per unit of the discounted future flow of capital services is 
assumed to be the same for all capital vintages at each given point of time. The 
discounted future service flow per capital unit which is s years old is given by 

where p is the rate of discount. Formally, our assumptions regarding relative 
capital prices can then be expressed as 

-- - q(t 'S) qO forall  t a n d a l l s 2 0 .  
Qp(s) QP(O) 

This equation implies a sort of "law of indifference" to hold between different 
capital vintages; since the prices per unit of (discounted) prospective capital 
services are the same, a firm will be indifferent between investing in new and old 
equipment. 

The common price per unit of (discounted) capital services is 

d t )  c(t) =-- 
d t )  

Qp(0) e-'"B(s) ds' 

This is a general expression for the user cost of capital in a neoclassical model 
of producer behaviour, in the absence of taxes. 

Combining (4) and (6), the value of the capital stock may be written as 

Furthermore, if we choose the current investment price, q( t) ,  as the price com- 
ponent of the market value, its quantity component becomes 

where 

This is the variable which we shall refer to as the net capital stock in the 
following. It is seen that KN(t),  like K( t ) ,  is constructed by aggregating previous 
investment flows, but the weighting system is different; the weight assigned to 
investment made s years ago in K(t) ,  Gp(s), is the share of the total discounted 
service flow produced by a capital unit after it is s years old, whereas the calculation 
of K( t )  is based on the technical survival function, B(s). It is seen that Gp(s) 
has the same mathematical properties as B(s), cf. (1). 



The conceptual difference between gross and net capital can be explained 
in a slightly different way: Let the elements of the net capital at time t which 
belongs to vintage t - s be denoted as ~ i ( t ,  s), i.e. 

~ i ( t ,  s )  = Gp(s)J(t -s) =- @As) K (r, 5). 
@,(O) 

While the gross capital stock is defined by simply adding (integrating over s )  all 
K(t,  s), the net capital stock is'calculated in a similar way after having first 
multiplied these vintages by the ratio @,(s)/@,(O), which expresses the remaining 
(discounted) flow of services per unit from "old" (age s )  capital vintages relative 
to the corresponding service flow produced by new capital. When compared with 
the gross capital, the net capital is thus adjusted for the fact that old capital 
objects generally are less productive in terms of future cumulated services than 
new ones, even if they are equivalent in terms of instantaneous service flows. 
From this interpretation, it may be concluded that estimates of net capital will 
normally be lower than corresponding figures for gross capital (strictly, the 
inequality K N ( t ) ~  K( t )  always  hold^).^ 

Net capital, in contrast to gross capital, is dependent on the rate of discount, 
p. This is due to the fact that it reflects prospective capital service flows. The net 
capital stock will, in general, increase with increasing discounting rate. 

The final concept with which we shall be concerned is depreciation. This 
variable has the same formal relationship to the net capital stock as retirement 
has to the gross capital stock, i.e. it is defined as the difference between the gross 
investment and the increase in the net capital stock. Formally, depreciation at 
time t can be expressed as follows: 

where g,(s) = -Gb(s) indicates the structure of depreciation, in the same way 
as b(s) represents the retirement process. 

It can be shown [cf. Bi@rn, 1983, section 61 that the capital service price, 
depreciation, net capital and gross capital satisfy the following simple relationship 

regardless of the form of the survival function. Its economic interpretation is that 
the current "user value" of the capital stock equals the sum of the value of 
depreciation and a term which represents interests imposed on the capital value, 
and is analogous to the expression for the user value of capital found in many 
textbooks describing static producer behaviour. However, decomposing the user 
value additively, on the basis of the gross capital concept, is valid only in the 
case of an exponential retirement process. Equation (12) shows, however, that 
such an additive formula exists as an identity between the "value" related concepts 
depreciation and net capital. 

2 ~ o r  the commonly applied exponentially declining survival function, B ( s )  = eCS", it can be 
easily shown that net capital equals gross capital for all parameter values. [Confer Bifirn, 1983, 
section 7.1 



The relationship (12) may be used to support the common practice applied 
in many countries when calculating net operating surplus as a residual, i.e. as 
what is left from gross factor income when wages and the value of "depreciation" 
is deducted. The reason for this is that national accounting calculations are 
commonly intended to represent the value dimension, rather than the capacity 
dimension of the capital stock.3 

3. PARAMETRIC SURVIVAL FUNCTIONS 
In this section, we present two classes of parametric survival functions which 

we consider useful for empirical applications. Each class is characterized by two 
parameters; the first representing the maximal life time of the capital, the second 
indicating the "curvature" of the survival profile. 

Consider first the following parametric form for B(s): 

1 -  f o r o s s s N ,  
B(s) = B1(s; N, n) = 

for s > N, 

where N is the maximal life time of the capital objects and n is a non-negative 
integer constant. This survival function is strictly convex if n r 2. The correspond- 
ing retirement function is 

n-1 

(14) 
for 0 5 s ~  N, 

for s > N. 

General expressions and a recursive procedure for deriving numerically the 
weighting functions for net capital and depreciation from this class of technical 
survival functions are presented in Biarn (1983, section 7). An interesting result 
for the case when the interest rate, p, is zero may, however, be mentioned: 

When no discounting of future capital services is performed, there is in this case 
a simple way of obtaining the weighting function of the net capital from that of 
the gross capital: we increase n by one. 

By varying the parameter n, the class of survival functions (13) generates 
several specifications discussed in the literature as special cases. This includes 
both the simultaneous retirement case n =0,  in which the capital objects are 
assumed to retain their full productive capacity during N periods before they 
are completely scrapped, and a linearly decreasing survival function, with n = 1. 

3~owever ,  in that case an inconsistency of the accounting practice in Norway is that the same 
(linear) survival function is used both for the estimation of depreciation and the construction of 
capital figures presented and used as if they were gross capital stocks. 



It is easily seen that when the technical survival function is of the simultaneous 
retirement type, the net capital stock in the zero-interest case is depreciated 
linearly; net capital figures estimated with this structure will thus coincide with 
gross capital figures calculated when the technical survival function is assumed 
to be linear. The third survival profile we shall consider is strictly convex, with 
n set equal to 5. 

As emphasized above, the net capital stock will normally be lower than the 
corresponding gross capital, and the weighting function for the former will lie 
below that for the latter. This property is illustrated in Figure 1 for a strictly 
convex survival function. 

Figure 1. A Strictly Convex Survival Function and the Corresponding Weighting Function for the 
Net Capital 

The second class of survival functions which we have applied has the 
following general form: 

(15) B(s) = ~ " ( s ;  N, m) = { l - ( ) m  f o r O s s s N ,  
0 for s > N, 

where m is a positive integer constant and N, as before, is the maximal life time 
of the capital units. This function is strictly concave if m r 2. 

Again, the "curvature" parameter m may be varied in order to generate 
specific survival profiles. When m = 1, we get the linear survival function. Further- 
more, for m + oo, this function degenerates to the simultaneous retirement case, 
since lim,,, (s/ N)" is zero when s < N and one when s = N. Our fourth survival 
function is obtained by setting m = 5. 

The derived weighting function for the net capital, G,(s), lies below the 
technical survival function, B(s). It should be noted that when the latter is of 



Figure 2. A Strictly Concave Survival Function and the Corresponding Weighting Function for the 
Net Capital 

the strictly concave type, i.e. when the retirement increases with age, it may be 
the case that the decline in the net capital is represented by a convex function, 
i.e. that depreciation decreases with age.4 An example of such a situation is given 
in Figure 2. 

The practical procedure for constructing time series for gross and net capital 
stocks, as it follows from sections 2 and 3, consists in cumulating past series for 
gross investment at constant prices over a period of length equal to the capital's 
maximal life time, by application of two different weighting schemes. The weights 
are operationally defined once the survival function, B(s), and the rate of discount, 
p, have been specified, and once an algorithm for conversion from continuous 
to discrete time has been constructed. 

The database for the present paper is Norwegian National Accounts Data 
for gross investment at constant (1975) prices, which permits us to go further in 
the direction of disaggregating capital by sector and kind than is usually possible. 
With a few exceptions, our gross investment series go as far back in time as to 
permit, with the values of the maximal life time specified, the computation of 
capital stock series starting in 1956 (at the latest). For our purpose, we have 
aggregated the detailed investment data in the national accounts to a sector 
classification with 26 sectors and three kinds of capital: 

4 ~ o t e  that for other constellations of the parameters affecting net capital, i.e. the "curvature 
parameter" (m) and the interest rate (p), the G,(s) function may be concave. This function increases 
with both m and p. However, with an interest rate equal to zero, the weighting function for the net 
capital is convex for all values of m (degenerating to a linear function in the simultaneous retirement 
case). 



1. Buildings and structures, 
2. Transport equipment, 
3. Machinery and other equipment, etc. 
Among the empirical results we want to focus on the following issues: 
(a) the effects of the form and curvature of the survival profile on gross 

capital stocks under different growth profiles for gross investment; 
(b) the relationship between gross and net capital stocks, and the dependence 

of the latter on the rate of discount assumed; 
(c) the effect of the assumed survival profile on the retirement rate; 
(d) the relationship between the retirement and depreciation rates; and 

finally 
(e) the way in which the assumed rate of discount affects the estimated rate 

of return to capital. 
The sensitivity of the gross capital stock to the form of the survival function 

for two selected industries is illustrated in Figures 3 and 4. We see that not only 
the level of the capital stock, but also its growth profile is strongly dependent on 
the structure of retirement. There are, however, notable differences between the 
production sectors in this respect. Oil production, which has been the most 
outstanding growth sector in Norway in the last decade, shows a sharply increasing 
capital stock over the entire period in the case with a simultaneous retirement 
pattern, whereas the capital stock attains a peak in 1977 and then decreases if a 
convex profile is assumed. 

- Simultaneous 

-- Concave 

....... Linear 

Convex 

Figure 3. Gross Capital for Four Different Survival Functions. Sector: Petroleum Production 
Category: Buildings and Constructions 

Manufacture of textiles etc., which exemplifies a sector with stagnant invest- 
ment, gives a somewhat different picture; gross capital stock (machinery) is 
slightly increasing in the convex case, showing stronger growth in the linear case, 
while accelerating in the concave and simultaneous retirement case. 



- Simultaneous 

-- Concave 

-...... Linear 

Convex 

Figure 4. Gross Capital for Four Different Survival Functions. Sector: Manufacture of Textiles. 
Category: Machinery 

To a large extent, these differences reflect the different age distribution of 
the capital stock implied by the four survival functions considered. The "more 
convex" the survival profile, the relatively larger are the weights given to invest- 
ments in the current and recent vintages as compared with older vintages. 
Regarding the oil industry, it should be recalled that a major part of the production 
capacity in Norway was built up during the 1970s. A closer look at the investment 
data reveals that gross investment increased strongly from 1973 to 1977, but 
decreased thereafter until 1981, when a new peak in investment was attained. 
This investment path explains the development of the gross capital stock in the 
convex case, with a peak in 1977. When the survival profile is assumed to be of 
the simultaneous retirement type, the gross capital stock increases throughout 
the period, because this assumption implies that no "heavy" vintages have been 
scrapped during the present period of observation. 

As mentioned in the introduction to this paper, an interesting application 
of the presented framework is to investigate the impact of changes in the form 
and curvature of the survival function on the implied measures of capital produc- 
tivity, e.g. gross production at constant prices per unit of gross capital. The 
differences in productivity for an arbitrary sector/category reflect the differences, 
both with respect to level and growth profile, in the corresponding gross capital 
stock. Thus, productivity is highest in the convex case, in which the most rapid 
deterioration of the capital stock takes place. Calculations based on the three 
other survival profiles lead to higher estimates of gross capital stocks, lower 
average productivity, and dampened relative fluctuations. 

Figures 5 and 6 serve to illustrate the difference between the gross and net 
capital. Here we consider a capital category with a long service life (dwellings, 
N =90 years), which explains the smoothness of the growth curves in these 



Figure 5 .  Gross and Net Capital Stock, Convex Survival Function. Sector: Dwellings. Category: 
Buildings and Constructions 
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Figure 6 .  Gross and Net Capital Stock, Concave Survival Function. Sector: Dwellings. Category: 
Buildings and Constructions 
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figures. We see that net capital is close to gross capital if the retirement and 
decline in efficiency follows a convex pattern ( B ( s )  convex). As noted in section 
3, the weighting function for net capital, G ( s ) ,  is in this case also convex. If the 
survival function is specified to be concave, which is probably the most realistic 
assumption for dwellings, we find, at least when a zero rate of discount is applied, 
a substantial difference between the numerical values of the two capital measures. 



This reflects the basically different curvature of their weighting functions; gross 
capital is constructed from a concave function, net capital from a convex function 
(cf. Figure 2). This implies that new and old capital vintages are given widely 
different weights in the two capital measures. 

The sensitivity of the net capital stock to the rate of discount, p, is illustrated 
in Figure 7. A change in this parameter alters the relative weights of different 
vintages because it affects the agents' relative evaluation of future flows of capital 
services under perfect market conditions. As noted in section 2, the larger the 
rate of discount, the closer is net capital to gross capital, and in the degenerate 
case when p goes to infinity, they coincide. An increase in p from 0 to 5 percent 
leads to a substantial rise in the net capital stock; the estimates for dwellings are 
for instance increased by about 25 percent. This is illustrated in Figure 7. 

Figure 7. Net Capital Stock for Different Interest Rates, Concave Survival Function. Sector: Dwel- 
lings. Category: Buildings and Constructions 

250- 

L 200- 
al C 

e 
Y 

10 g 150-- 
7 

E 0 .- - - .- 
a loo-- 

=-- 

At higher levels of the interest rate, changes in this parameter have far less 
impact on the net capital stock; its values for p = 20 percent only slightly exceed 
those for p = 10 percent. In fact, the net capital stock for p = 20 percent is very 
close to the gross capital stock, as can be seen by comparing Figures 6 and 7. 

In Figure 8, we illustrate the effect of changing the form of the survival 
profile on the implied retirement rate, defined as the ratio between retirement 
and gross capital stock, i.e. 

We find, not surprisingly, that its level strongly depends on the curvature of the 
survival profile, taking its lowest average value in the simultaneous retirement 
case, and its highest value in the convex case. It can be shown [cf. Bi@rn, 1983, 
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Figure 8. Retirement Rates for Four Different Survival Functions. Sector: Manufacture of Textiles. 
Category: Machinery 

section 71 that in a situation with constant gross investment, we get the following 
expressions for the retirement rates in the alternatives considered: 

(17) simultaneous retirement: S = 1 /  N, 
concave: 8 = 1.2/N, 
linear: S = 2 / N ,  
convex: S = 6 / N .  

The departure of the actual retirement rates from these "theoretical" values 
reflects the growth and cyclical variations in gross investment and the resulting 
variations in the age distribution of the capital stock over the period of observation. 

The relative fluctuations of the retirement rates are widely different in the 
four cases. Statistically interpreted, the retirement rates are ratios of two moving 
average processes in gross investment, their length and weighting system reflecting 
the maximal life time and the form of the survival function [cf. (2) and (3)]. 
Both these lag distributions imply a high degree of smoothing of the investment 
profiles in the linear and convex case, which explains the smoothness of their 
retirement rates. In the simultaneous retirement case, however, retirement 
coincides with gross investment lagged a number of years equal to the (constant) 
life-time N, i.e. the moving average process in the numerator of (16) degenerates 
to a process with a constant lag. Its denominator is simply the cumulated flow 
of investment effectuated during the past N  years. This explains the volatility of 
the retirement rate in this case. 

The depreciation rate is the ratio between depreciation and net capital stock, 
i.e. 



An illustration of the difference between the retirement and depreciation rates is 
given in Figure 9. Here a simultaneous retirement survival profile is assumed, 
and the calculations are performed with a zero discount rate. With these assump- 
tions it was shown in section 3 that depreciation follows a linear function. 
Combining this fact with (17), it follows that if investment were constant, the 
retirement rate would be half the depreciation rate. From Figure 9, it is confirmed 
that the retirement rate is far smaller than the depreciation rate. The latter is 
fairly stable around 2.5 percent, while the former shows considerable fluctuations, 
reflecting primarily the cyclical variations in gross investment. 

Figure 9. Retirement Rate and Depreciation Rate, Simultaneous Retirement. Sector: Manufacture 
of Textiles. Category: Buildings and Constructions 

Finally, let us examine how our choice of capital measure affects the implied 
rates of return to capital. The formula used for calculating this variable is 

where E is the gross capital income, i.e. the gross operating surplus (excluding 
remuneration to self-employed persons) as recorded in the national accounts, 
before deduction of depreciation in value terms. Since the numerical values of 
D, and KN depend on the assumed survival function B(s) and the rate of 
discount p, the value of r will also depend on these parameters. We will not 
discuss and interpret these relationships in depth here. We only select a single 
survival profile to illustrate the numerical relationship between r and p for this 
profile. The survival profile selected is the concave one with m = 5. Numerical 
results for the sector Manufacture of metals, with all capital types aggregated, 
are given in Figure 10. 



It should be admitted that the interpretation of rates of return calculated in 
this way is not obvious. The resulting figures may be characterized as ex post 
rates of return, being ratios between observed capital revenues and the computed 
market value of the capital stock. This may be a natural procedure for calculating 
rates of return for national accounting purposes. It may, however, be alleged that 
there is a theoretical inconsistency between this approach and the neoclassical 
theory of producers' market behaviour. This basically stems from the fact that 
we take p as an exogenous and time invariant parameter and estimate sector 
specijic rates of return as  time functions conditional on this value. In principle, p 
and r should have been treated as jointly determined, as market equilibrium 
interest rates, within the framework of a multi-sectoral model of market behaviour. 
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Figure 10. Rate of Return to Capital, Concave Survival Function. Sector: Manufacture of Metals. 
Category: Total Capital Stock 

The nature of this problem is, perhaps, best understood by considering the 
following simple case: If all production functions were linearly homogeneous, 
if perfect market conditions with no uncertainty prevailed in all markets (including 
the credit market), and if all errors of measurement in our data on E and q could 
be disregarded, then the theory would predict equality between the ex post rate 
of return and the interest rate applied by market agents when discounting 
prospective incomes and costs "in the long run," i.e. we would have r = p. If we 
had chosen to stick entirely to these neoclassical assumptions, then we should 
have estimated net capital, depreciation and the rate of return simultaneously by 
setting r = p in the equations from the outset for each sector under consideration. 
A partial sector specijic "equilibrium value" for the rate of return, p * ,  could then, 
in principle, have been obtained from 



with all variables interpreted as time functions, when we recall that KN and DN 
are functions of p*.5 

Figure 10 shows the variations in the rate of return by successively choosing 
0, 5, 10, and 20 percent as discounting rates. In all cases, the rates of return show 
strong fluctuations. This is caused mainly by the variations in the observed 
operating surplus. Concerning the question of how variations in the discounting 
rate influence the rate of return, we can make the following observations from 
this figure: 

-It seems to exist a level at which the rate of return is independent of 
variations in the interest rate used in discounting future capital services. 
All graphs intersect at this value. Furthermore, this critical level seems to 
be stable over time. 

-The cyclical movements of the rate of return around this "intersection 
level" are dampened when the discounting rate increases. 

For an attempt to explain these results, we refer to Bibrn, Holmoy and Olsen 
(1985, section 5). 

From the empirical results presented above, two main conclusions emerge. 
First, the distinction between the capacity dimension and the wealth dimension 
of the capital stock, i.e. between the gross and the net capital, is not only of 
theoretical interest; it may be empirically very important. How important it is, 
depends on the form of the survival profile. The difference between the two 
capital measures is larger for strongly concave profiles than for strongly convex 
ones, and is larger the smaller is the interest rate at which the future flow of 
capital services is discounted when constructing the net capital stock. Second, 
the chosen form of the survival profile may strongly influence measures of 
macroeconomic variables like retirement rates, depreciation rates, and capital 
productivity. This is true not only for the level of these variables; their cyclical 
behaviour may be strongly affected as well. These results have obvious implica- 
tions for the interpretation of macroeconomic performance and for the 
specification of capital accumulation in macroeconometric models. 

The four survival functions used as illustrations throughout this paper rep- 
resent ways in which we could imagine the retirement of capital units or the 
decline in technical efficiency to take place. The simultaneous retirement profile 
and the convex profile are probably extreme cases from this point of view. 
Needless to say, we strongly need empirical evidence on survival profiles from 
which we could further constrain the set of specifications relevant to empirical 
work. Such information could be obtained in two ways: by observing the actual 
age distribution of the capital stock and the firms' actual scrapping behaviour, or 
by observing the development of vintage prices for sufficiently homogeneous 
capital units and exploiting the assumed law of indifference between vintages, 
( 6 ) ,  which underlies the construction of the net capital stock. A closer examination 
of the econometric implications of these research strategies is outside the scope 
of the present paper. 

'Solving (20) for p* is basically the same procedure for calculating rates of return to capital as 
the method applied in Holmfiy and Olsen (1986). 
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